Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- vllm
|
4 |
+
- vision
|
5 |
+
- w4a16
|
6 |
+
license: apache-2.0
|
7 |
+
license_link: >-
|
8 |
+
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
|
9 |
+
language:
|
10 |
+
- en
|
11 |
+
base_model: Qwen/Qwen2.5-VL-7B-Instruct
|
12 |
+
library_name: transformers
|
13 |
+
---
|
14 |
+
|
15 |
+
# Qwen2.5-VL-7B-Instruct-quantized-w4a16
|
16 |
+
|
17 |
+
## Model Overview
|
18 |
+
- **Model Architecture:** Qwen/Qwen2.5-VL-7B-Instruct
|
19 |
+
- **Input:** Vision-Text
|
20 |
+
- **Output:** Text
|
21 |
+
- **Model Optimizations:**
|
22 |
+
- **Weight quantization:** INT4
|
23 |
+
- **Activation quantization:** FP16
|
24 |
+
- **Release Date:** 2/24/2025
|
25 |
+
- **Version:** 1.0
|
26 |
+
- **Model Developers:** Neural Magic
|
27 |
+
|
28 |
+
Quantized version of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct).
|
29 |
+
|
30 |
+
### Model Optimizations
|
31 |
+
|
32 |
+
This model was obtained by quantizing the weights of [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) to INT8 data type, ready for inference with vLLM >= 0.5.2.
|
33 |
+
|
34 |
+
## Deployment
|
35 |
+
|
36 |
+
### Use with vLLM
|
37 |
+
|
38 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
39 |
+
|
40 |
+
```python
|
41 |
+
from vllm.assets.image import ImageAsset
|
42 |
+
from vllm import LLM, SamplingParams
|
43 |
+
|
44 |
+
# prepare model
|
45 |
+
llm = LLM(
|
46 |
+
model="neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16",
|
47 |
+
trust_remote_code=True,
|
48 |
+
max_model_len=4096,
|
49 |
+
max_num_seqs=2,
|
50 |
+
)
|
51 |
+
|
52 |
+
# prepare inputs
|
53 |
+
question = "What is the content of this image?"
|
54 |
+
inputs = {
|
55 |
+
"prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
|
56 |
+
"multi_modal_data": {
|
57 |
+
"image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
|
58 |
+
},
|
59 |
+
}
|
60 |
+
|
61 |
+
# generate response
|
62 |
+
print("========== SAMPLE GENERATION ==============")
|
63 |
+
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
|
64 |
+
print(f"PROMPT : {outputs[0].prompt}")
|
65 |
+
print(f"RESPONSE: {outputs[0].outputs[0].text}")
|
66 |
+
print("==========================================")
|
67 |
+
```
|
68 |
+
|
69 |
+
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
70 |
+
|
71 |
+
## Creation
|
72 |
+
|
73 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog.
|
74 |
+
|
75 |
+
<details>
|
76 |
+
<summary>Model Creation Code</summary>
|
77 |
+
|
78 |
+
```python
|
79 |
+
import base64
|
80 |
+
from io import BytesIO
|
81 |
+
import torch
|
82 |
+
from datasets import load_dataset
|
83 |
+
from qwen_vl_utils import process_vision_info
|
84 |
+
from transformers import AutoProcessor
|
85 |
+
from llmcompressor.modifiers.quantization import GPTQModifier
|
86 |
+
from llmcompressor.transformers import oneshot
|
87 |
+
from llmcompressor.transformers.tracing import (
|
88 |
+
TraceableQwen2_5_VLForConditionalGeneration,
|
89 |
+
)
|
90 |
+
from compressed_tensors.quantization import QuantizationArgs, QuantizationType, QuantizationStrategy, ActivationOrdering, QuantizationScheme
|
91 |
+
|
92 |
+
# Load model.
|
93 |
+
model_id = "Qwen/Qwen2.5-VL-7B-Instruct"
|
94 |
+
|
95 |
+
model = TraceableQwen2_5_VLForConditionalGeneration.from_pretrained(
|
96 |
+
model_id,
|
97 |
+
device_map="auto",
|
98 |
+
torch_dtype="auto",
|
99 |
+
)
|
100 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
101 |
+
|
102 |
+
# Oneshot arguments
|
103 |
+
DATASET_ID = "lmms-lab/flickr30k"
|
104 |
+
DATASET_SPLIT = {"calibration": "test[:512]"}
|
105 |
+
NUM_CALIBRATION_SAMPLES = 512
|
106 |
+
MAX_SEQUENCE_LENGTH = 2048
|
107 |
+
|
108 |
+
# Load dataset and preprocess.
|
109 |
+
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
|
110 |
+
ds = ds.shuffle(seed=42)
|
111 |
+
dampening_frac=0.01
|
112 |
+
|
113 |
+
# Apply chat template and tokenize inputs.
|
114 |
+
def preprocess_and_tokenize(example):
|
115 |
+
# preprocess
|
116 |
+
buffered = BytesIO()
|
117 |
+
example["image"].save(buffered, format="PNG")
|
118 |
+
encoded_image = base64.b64encode(buffered.getvalue())
|
119 |
+
encoded_image_text = encoded_image.decode("utf-8")
|
120 |
+
base64_qwen = f"data:image;base64,{encoded_image_text}"
|
121 |
+
messages = [
|
122 |
+
{
|
123 |
+
"role": "user",
|
124 |
+
"content": [
|
125 |
+
{"type": "image", "image": base64_qwen},
|
126 |
+
{"type": "text", "text": "What does the image show?"},
|
127 |
+
],
|
128 |
+
}
|
129 |
+
]
|
130 |
+
text = processor.apply_chat_template(
|
131 |
+
messages, tokenize=False, add_generation_prompt=True
|
132 |
+
)
|
133 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
134 |
+
|
135 |
+
# tokenize
|
136 |
+
return processor(
|
137 |
+
text=[text],
|
138 |
+
images=image_inputs,
|
139 |
+
videos=video_inputs,
|
140 |
+
padding=False,
|
141 |
+
max_length=MAX_SEQUENCE_LENGTH,
|
142 |
+
truncation=True,
|
143 |
+
)
|
144 |
+
ds = ds.map(preprocess_and_tokenize, remove_columns=ds["calibration"].column_names)
|
145 |
+
|
146 |
+
# Define a oneshot data collator for multimodal inputs.
|
147 |
+
def data_collator(batch):
|
148 |
+
assert len(batch) == 1
|
149 |
+
return {key: torch.tensor(value) for key, value in batch[0].items()}
|
150 |
+
|
151 |
+
recipe = GPTQModifier(
|
152 |
+
targets="Linear",
|
153 |
+
config_groups={
|
154 |
+
"config_group": QuantizationScheme(
|
155 |
+
targets=["Linear"],
|
156 |
+
weights=QuantizationArgs(
|
157 |
+
num_bits=4,
|
158 |
+
type=QuantizationType.INT,
|
159 |
+
strategy=QuantizationStrategy.GROUP,
|
160 |
+
group_size=128,
|
161 |
+
symmetric=True,
|
162 |
+
dynamic=False,
|
163 |
+
actorder=ActivationOrdering.WEIGHT,
|
164 |
+
),
|
165 |
+
),
|
166 |
+
},
|
167 |
+
sequential_targets=["Qwen2_5_VLDecoderLayer"],
|
168 |
+
ignore=["lm_head", "re:visual.*"],
|
169 |
+
update_size=NUM_CALIBRATION_SAMPLES,
|
170 |
+
dampening_frac=dampening_frac
|
171 |
+
)
|
172 |
+
|
173 |
+
SAVE_DIR=f"{model_id.split('/')[1]}-quantized.w4a16"
|
174 |
+
|
175 |
+
# Perform oneshot
|
176 |
+
oneshot(
|
177 |
+
model=model,
|
178 |
+
tokenizer=model_id,
|
179 |
+
dataset=ds,
|
180 |
+
recipe=recipe,
|
181 |
+
max_seq_length=MAX_SEQUENCE_LENGTH,
|
182 |
+
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
183 |
+
trust_remote_code_model=True,
|
184 |
+
data_collator=data_collator,
|
185 |
+
output_dir=SAVE_DIR
|
186 |
+
)
|
187 |
+
|
188 |
+
```
|
189 |
+
</details>
|
190 |
+
|
191 |
+
## Evaluation
|
192 |
+
|
193 |
+
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard), OpenLLM Leaderboard [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/) and on [HumanEval](https://github.com/neuralmagic/evalplus), using the following commands:
|
194 |
+
|
195 |
+
<details>
|
196 |
+
<summary>Evaluation Commands</summary>
|
197 |
+
|
198 |
+
```
|
199 |
+
```
|
200 |
+
|
201 |
+
</details>
|
202 |
+
|
203 |
+
### Accuracy
|
204 |
+
|
205 |
+
## Inference Performance
|
206 |
+
|
207 |
+
|
208 |
+
This model achieves up to xxx speedup in single-stream deployment and up to xxx speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario.
|
209 |
+
The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm).
|
210 |
+
|
211 |
+
<details>
|
212 |
+
<summary>Benchmarking Command</summary>
|
213 |
+
```
|
214 |
+
guidellm --model neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16 --target "http://localhost:8000/v1" --data-type emulated --data prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>,images=<num_images>,width=<image_width>,height=<image_height> --max seconds 120 --backend aiohttp_server
|
215 |
+
```
|
216 |
+
|
217 |
+
</details>
|
218 |
+
|
219 |
+
### Single-stream performance (measured with vLLM version 0.7.2)
|
220 |
+
|
221 |
+
<table border="1" class="dataframe">
|
222 |
+
<thead>
|
223 |
+
<tr>
|
224 |
+
<th></th>
|
225 |
+
<th></th>
|
226 |
+
<th></th>
|
227 |
+
<th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th>
|
228 |
+
<th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th>
|
229 |
+
<th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th>
|
230 |
+
</tr>
|
231 |
+
<tr>
|
232 |
+
<th>Hardware</th>
|
233 |
+
<th>Model</th>
|
234 |
+
<th>Average Cost Reduction</th>
|
235 |
+
<th>Latency (s)</th>
|
236 |
+
<th>QPD</th>
|
237 |
+
<th>Latency (s)th>
|
238 |
+
<th>QPD</th>
|
239 |
+
<th>Latency (s)</th>
|
240 |
+
<th>QPD</th>
|
241 |
+
</tr>
|
242 |
+
</thead>
|
243 |
+
<tbody style="text-align: center">
|
244 |
+
<tr>
|
245 |
+
<th rowspan="3" valign="top">A100x1</th>
|
246 |
+
<th>Qwen/Qwen2.5-VL-7B-Instruct</th>
|
247 |
+
<td></td>
|
248 |
+
<td>2.8</td>
|
249 |
+
<td>707</td>
|
250 |
+
<td>1.7</td>
|
251 |
+
<td>1162</td>
|
252 |
+
<td>1.7</td>
|
253 |
+
<td>1198</td>
|
254 |
+
</tr>
|
255 |
+
<tr>
|
256 |
+
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8</th>
|
257 |
+
<td>1.24</td>
|
258 |
+
<td>2.4</td>
|
259 |
+
<td>851</td>
|
260 |
+
<td>1.4</td>
|
261 |
+
<td>1454</td>
|
262 |
+
<td>1.3</td>
|
263 |
+
<td>1512</td>
|
264 |
+
</tr>
|
265 |
+
<tr>
|
266 |
+
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th>
|
267 |
+
<td>1.49</td>
|
268 |
+
<td>2.2</td>
|
269 |
+
<td>912</td>
|
270 |
+
<td>1.1</td>
|
271 |
+
<td>1791</td>
|
272 |
+
<td>1.0</td>
|
273 |
+
<td>1950</td>
|
274 |
+
</tr>
|
275 |
+
<tr>
|
276 |
+
<th rowspan="3" valign="top">H100x1</th>
|
277 |
+
<th>Qwen/Qwen2.5-VL-7B-Instruct</th>
|
278 |
+
<td></td>
|
279 |
+
<td>2.0</td>
|
280 |
+
<td>557</td>
|
281 |
+
<td>1.2</td>
|
282 |
+
<td>919</td>
|
283 |
+
<td>1.2</td>
|
284 |
+
<td>941</td>
|
285 |
+
</tr>
|
286 |
+
<tr>
|
287 |
+
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic</th>
|
288 |
+
<td>1.28</td>
|
289 |
+
<td>1.6</td>
|
290 |
+
<td>698</td>
|
291 |
+
<td>0.9</td>
|
292 |
+
<td>1181</td>
|
293 |
+
<td>0.9</td>
|
294 |
+
<td>1219</td>
|
295 |
+
</tr>
|
296 |
+
<tr>
|
297 |
+
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th>
|
298 |
+
<td>1.28</td>
|
299 |
+
<td>1.6</td>
|
300 |
+
<td>686</td>
|
301 |
+
<td>0.9</td>
|
302 |
+
<td>1191</td>
|
303 |
+
<td>0.9</td>
|
304 |
+
<td>1228</td>
|
305 |
+
</tr>
|
306 |
+
</tbody>
|
307 |
+
</table>
|
308 |
+
|
309 |
+
|
310 |
+
|
311 |
+
### Multi-stream asynchronous performance (measured with vLLM version 0.7.2)
|
312 |
+
|
313 |
+
<table border="1" class="dataframe">
|
314 |
+
<thead>
|
315 |
+
<tr>
|
316 |
+
<th></th>
|
317 |
+
<th></th>
|
318 |
+
<th></th>
|
319 |
+
<th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th>
|
320 |
+
<th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th>
|
321 |
+
<th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th>
|
322 |
+
</tr>
|
323 |
+
<tr>
|
324 |
+
<th>Hardware</th>
|
325 |
+
<th>Model</th>
|
326 |
+
<th>Average Cost Reduction</th>
|
327 |
+
<th>Maximum throughput (QPS)</th>
|
328 |
+
<th>QPD</th>
|
329 |
+
<th>Maximum throughput (QPS)</th>
|
330 |
+
<th>QPD</th>
|
331 |
+
<th>Maximum throughput (QPS)</th>
|
332 |
+
<th>QPD</th>
|
333 |
+
</tr>
|
334 |
+
</thead>
|
335 |
+
<tbody style="text-align: center">
|
336 |
+
<tr>
|
337 |
+
<th rowspan="3" valign="top">A100x1</th>
|
338 |
+
<th>Qwen/Qwen2.5-VL-7B-Instruct-quantized.</th>
|
339 |
+
<td></td>
|
340 |
+
<td>0.7</td>
|
341 |
+
<td>1347</td>
|
342 |
+
<td>2.6</td>
|
343 |
+
<td>5221</td>
|
344 |
+
<td>3.0</td>
|
345 |
+
<td>6122</td>
|
346 |
+
</tr>
|
347 |
+
<tr>
|
348 |
+
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8</th>
|
349 |
+
<td>1.27</td>
|
350 |
+
<td>0.8</td>
|
351 |
+
<td>1639</td>
|
352 |
+
<td>3.4</td>
|
353 |
+
<td>6851</td>
|
354 |
+
<td>3.9</td>
|
355 |
+
<td>7918</td>
|
356 |
+
</tr>
|
357 |
+
<tr>
|
358 |
+
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th>
|
359 |
+
<td>1.21</td>
|
360 |
+
<td>0.7</td>
|
361 |
+
<td>1314</td>
|
362 |
+
<td>3.0</td>
|
363 |
+
<td>5983</td>
|
364 |
+
<td>4.6</td>
|
365 |
+
<td>9206</td>
|
366 |
+
</tr>
|
367 |
+
<tr>
|
368 |
+
<th rowspan="3" valign="top">H100x1</th>
|
369 |
+
<th>Qwen/Qwen2.5-VL-7B-Instruct</th>
|
370 |
+
<td></td>
|
371 |
+
<td>0.9</td>
|
372 |
+
<td>969</td>
|
373 |
+
<td>3.1</td>
|
374 |
+
<td>3358</td>
|
375 |
+
<td>3.3</td>
|
376 |
+
<td>3615</td>
|
377 |
+
</tr>
|
378 |
+
<tr>
|
379 |
+
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic</th>
|
380 |
+
<td>1.29</td>
|
381 |
+
<td>1.2</td>
|
382 |
+
<td>1331</td>
|
383 |
+
<td>3.8</td>
|
384 |
+
<td>4109</td>
|
385 |
+
<td>4.2</td>
|
386 |
+
<td>4598</td>
|
387 |
+
</tr>
|
388 |
+
<tr>
|
389 |
+
<th>neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16</th>
|
390 |
+
<td>1.28</td>
|
391 |
+
<td>1.2</td>
|
392 |
+
<td>1298</td>
|
393 |
+
<td>3.8</td>
|
394 |
+
<td>4190</td>
|
395 |
+
<td>4.2</td>
|
396 |
+
<td>4573</td>
|
397 |
+
</tr>
|
398 |
+
</tbody>
|
399 |
+
</table>
|