shubhrapandit's picture
Update README.md
ab5aa65 verified
|
raw
history blame
8.79 kB
metadata
tags:
  - vllm
  - vision
  - fp8
license: apache-2.0
license_link: >-
  https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md
language:
  - en
base_model: Qwen/Qwen2.5-VL-7B-Instruct
library_name: transformers

Qwen2.5-VL-7B-Instruct-FP8-Dynamic

Model Overview

  • Model Architecture: Qwen2.5-VL-7B-Instruct
    • Input: Vision-Text
    • Output: Text
  • Model Optimizations:
    • Weight quantization: FP8
    • Activation quantization: FP8
  • Release Date: 2/24/2025
  • Version: 1.0
  • Model Developers: Neural Magic

Quantized version of Qwen/Qwen2.5-VL-7B-Instruct.

Model Optimizations

This model was obtained by quantizing the weights of Qwen/Qwen2.5-VL-7B-Instruct to FP8 data type, ready for inference with vLLM >= 0.5.2.

Deployment

Use with vLLM

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from vllm.assets.image import ImageAsset
from vllm import LLM, SamplingParams

# prepare model
llm = LLM(
    model="neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic",
    trust_remote_code=True,
    max_model_len=4096,
    max_num_seqs=2,
)

# prepare inputs
question = "What is the content of this image?"
inputs = {
    "prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n",
    "multi_modal_data": {
        "image": ImageAsset("cherry_blossom").pil_image.convert("RGB")
    },
}

# generate response
print("========== SAMPLE GENERATION ==============")
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64))
print(f"PROMPT  : {outputs[0].prompt}")
print(f"RESPONSE: {outputs[0].outputs[0].text}")
print("==========================================")

vLLM also supports OpenAI-compatible serving. See the documentation for more details.

Creation

This model was created with llm-compressor by running the code snippet below as part a multimodal announcement blog.

Model Creation Code
import requests
import torch
from PIL import Image
from transformers import AutoProcessor
from llmcompressor.transformers import oneshot
from llmcompressor.transformers.tracing import (
    TraceableQwen2_5_VLForConditionalGeneration,
)
from llmcompressor.modifiers.quantization import QuantizationModifier

# Load model.
model_id = Qwen/Qwen2.5-VL-7B-Instruct
model = TraceableQwen2_5_VLForConditionalGeneration.from_pretrained(
    model_id, device_map="auto", torch_dtype="auto"
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)

# Recipe
recipe = [
    QuantizationModifier(
        targets="Linear",
        scheme="FP8_DYNAMIC",
        sequential_targets=["MistralDecoderLayer"],
        ignore=["re:.*lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
    ),
]

SAVE_DIR=f"{model_id.split('/')[1]}-FP8-Dynamic"

# Perform oneshot
oneshot(
    model=model,
    recipe=recipe,
    trust_remote_code_model=True,
    output_dir=SAVE_DIR
)

Evaluation

The model was evaluated on OpenLLM Leaderboard V1, OpenLLM Leaderboard V2 and on HumanEval, using the following commands:

Evaluation Commands

Accuracy

Inference Performance

This model achieves up to 1.3x speedup in single-stream deployment and 1.37x in multi-stream deployment, depending on hardware and use-case scenario. The following performance benchmarks were conducted with vLLM version 0.7.2, and GuideLLM.

Benchmarking Command ``` guidellm --model neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic --target "http://localhost:8000/v1" --data-type emulated --data prompt_tokens=,generated_tokens=,images=,width=,height= --max seconds 120 --backend aiohttp_server ```

Single-stream performance (measured with vLLM version 0.7.2)

Document Visual Question Answering
1680W x 2240H
64/128
Visual Reasoning
640W x 480H
128/128
Image Captioning
480W x 360H
0/128
Hardware Model Average Cost Reduction Latency (s) QPD Latency (s)th> QPD Latency (s) QPD
A100x1 Qwen/Qwen2.5-VL-7B-Instruct 2.8 707 1.7 1162 1.7 1198
neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8 1.24 2.4 851 1.4 1454 1.3 1512
neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16 1.49 2.2 912 1.1 1791 1.0 1950
H100x1 Qwen/Qwen2.5-VL-7B-Instruct 2.0 557 1.2 919 1.2 941
neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic 1.28 1.6 698 0.9 1181 0.9 1219
neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16 1.28 1.6 686 0.9 1191 0.9 1228

Multi-stream asynchronous performance (measured with vLLM version 0.7.2)

Document Visual Question Answering
1680W x 2240H
64/128
Visual Reasoning
640W x 480H
128/128
Image Captioning
480W x 360H
0/128
Hardware Model Average Cost Reduction Maximum throughput (QPS) QPD Maximum throughput (QPS) QPD Maximum throughput (QPS) QPD
A100x1 Qwen/Qwen2.5-VL-7B-Instruct-quantized. 0.7 1347 2.6 5221 3.0 6122
neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w8a8 1.27 0.8 1639 3.4 6851 3.9 7918
neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16 1.21 0.7 1314 3.0 5983 4.6 9206
H100x1 Qwen/Qwen2.5-VL-7B-Instruct 0.9 969 3.1 3358 3.3 3615
neuralmagic/Qwen2.5-VL-7B-Instruct-FP8-Dynamic 1.29 1.2 1331 3.8 4109 4.2 4598
neuralmagic/Qwen2.5-VL-7B-Instruct-quantized.w4a16 1.28 1.2 1298 3.8 4190 4.2 4573