|
--- |
|
tags: |
|
- vllm |
|
- vision |
|
- w4a16 |
|
license: apache-2.0 |
|
license_link: >- |
|
https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md |
|
language: |
|
- en |
|
base_model: Qwen/Qwen2-VL-72B-Instruct |
|
library_name: transformers |
|
--- |
|
|
|
# Qwen2-VL-72B-Instruct-quantized-w4a16 |
|
|
|
## Model Overview |
|
- **Model Architecture:** Qwen/Qwen2-VL-72B-Instruct |
|
- **Input:** Vision-Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** FP8 |
|
- **Activation quantization:** FP8 |
|
- **Release Date:** 2/24/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [Qwen/Qwen2-VL-72B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct). |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights of [Qwen/Qwen2-VL-72B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct) to FP8 data type, ready for inference with vLLM >= 0.5.2. |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from vllm.assets.image import ImageAsset |
|
from vllm import LLM, SamplingParams |
|
|
|
# prepare model |
|
llm = LLM( |
|
model="neuralmagic/Qwen2-VL-72B-Instruct-quantized.w4a16", |
|
trust_remote_code=True, |
|
max_model_len=4096, |
|
max_num_seqs=2, |
|
) |
|
|
|
# prepare inputs |
|
question = "What is the content of this image?" |
|
inputs = { |
|
"prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n", |
|
"multi_modal_data": { |
|
"image": ImageAsset("cherry_blossom").pil_image.convert("RGB") |
|
}, |
|
} |
|
|
|
# generate response |
|
print("========== SAMPLE GENERATION ==============") |
|
outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64)) |
|
print(f"PROMPT : {outputs[0].prompt}") |
|
print(f"RESPONSE: {outputs[0].outputs[0].text}") |
|
print("==========================================") |
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog. |
|
|
|
<details> |
|
<summary>Model Creation Code</summary> |
|
|
|
```python |
|
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration |
|
|
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
from llmcompressor.transformers import oneshot, wrap_hf_model_class |
|
|
|
MODEL_ID = "Qwen/Qwen2-VL-72B-Instruct" |
|
|
|
# Load model. |
|
model_class = wrap_hf_model_class(Qwen2VLForConditionalGeneration) |
|
model = model_class.from_pretrained(MODEL_ID, device_map="auto", torch_dtype="auto") |
|
processor = AutoProcessor.from_pretrained(MODEL_ID) |
|
|
|
# Configure the quantization algorithm and scheme. |
|
# In this case, we: |
|
# * quantize the weights to fp8 with per channel via ptq |
|
# * quantize the activations to fp8 with dynamic per token |
|
recipe = QuantizationModifier( |
|
targets="Linear", |
|
scheme="FP8_DYNAMIC", |
|
ignore=["re:.*lm_head", "re:visual.*"], |
|
) |
|
|
|
# Apply quantization and save to disk in compressed-tensors format. |
|
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-dynamic" |
|
oneshot(model=model, recipe=recipe, output_dir=SAVE_DIR) |
|
processor.save_pretrained(SAVE_DIR) |
|
|
|
# Confirm generations of the quantized model look sane. |
|
print("========== SAMPLE GENERATION ==============") |
|
input_ids = processor(text="Hello my name is", return_tensors="pt").input_ids.to("cuda") |
|
output = model.generate(input_ids, max_new_tokens=20) |
|
print(processor.decode(output[0])) |
|
print("==========================================") |
|
``` |
|
</details> |
|
|
|
## Evaluation |
|
|
|
The model was evaluated using [mistral-evals](https://github.com/neuralmagic/mistral-evals) for vision-related tasks and using [lm_evaluation_harness](https://github.com/neuralmagic/lm-evaluation-harness) for select text-based benchmarks. The evaluations were conducted using the following commands: |
|
|
|
<details> |
|
<summary>Evaluation Commands</summary> |
|
|
|
### Vision Tasks |
|
- vqav2 |
|
- docvqa |
|
- mathvista |
|
- mmmu |
|
- chartqa |
|
|
|
``` |
|
vllm serve neuralmagic/pixtral-12b-quantized.w8a8 --tensor_parallel_size 1 --max_model_len 25000 --trust_remote_code --max_num_seqs 8 --gpu_memory_utilization 0.9 --dtype float16 --limit_mm_per_prompt image=7 |
|
|
|
python -m eval.run eval_vllm \ |
|
--model_name neuralmagic/pixtral-12b-quantized.w8a8 \ |
|
--url http://0.0.0.0:8000 \ |
|
--output_dir ~/tmp \ |
|
--eval_name <vision_task_name> |
|
``` |
|
|
|
### Text-based Tasks |
|
#### MMLU |
|
|
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="<model_name>",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=<n>,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ |
|
--tasks mmlu \ |
|
--num_fewshot 5 \ |
|
--batch_size auto \ |
|
--output_path output_dir |
|
|
|
``` |
|
|
|
#### MGSM |
|
|
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="<model_name>",dtype=auto,max_model_len=4096,max_gen_toks=2048,max_num_seqs=128,tensor_parallel_size=<n>,gpu_memory_utilization=0.9 \ |
|
--tasks mgsm_cot_native \ |
|
--num_fewshot 0 \ |
|
--batch_size auto \ |
|
--output_path output_dir |
|
|
|
``` |
|
</details> |
|
|
|
|
|
### Accuracy |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<th>Category</th> |
|
<th>Metric</th> |
|
<th>Qwen/Qwen2-VL-72B-Instruct</th> |
|
<th>neuralmagic/Qwen2-VL-72B-Instruct-FP8-Dynamic</th> |
|
<th>Recovery (%)</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td rowspan="6"><b>Vision</b></td> |
|
<td>MMMU (val, CoT)<br><i>explicit_prompt_relaxed_correctness</i></td> |
|
<td>62.11</td> |
|
<td>60.67</td> |
|
<td>97.68%</td> |
|
</tr> |
|
<tr> |
|
<td>VQAv2 (val)<br><i>vqa_match</i></td> |
|
<td>82.51</td> |
|
<td>82.44</td> |
|
<td>99.91%</td> |
|
</tr> |
|
<tr> |
|
<td>DocVQA (val)<br><i>anls</i></td> |
|
<td>95.01</td> |
|
<td>95.10</td> |
|
<td>100.09%</td> |
|
</tr> |
|
<tr> |
|
<td>ChartQA (test, CoT)<br><i>anywhere_in_answer_relaxed_correctness</i></td> |
|
<td>83.40</td> |
|
<td>83.68</td> |
|
<td>100.34%</td> |
|
</tr> |
|
<tr> |
|
<td>Mathvista (testmini, CoT)<br><i>explicit_prompt_relaxed_correctness</i></td> |
|
<td>66.57</td> |
|
<td>67.07</td> |
|
<td>100.75%</td> |
|
</tr> |
|
<tr> |
|
<td><b>Average Score</b></td> |
|
<td><b>77.12</b></td> |
|
<td><b>77.39</b></td> |
|
<td><b>100.35%</b></td> |
|
</tr> |
|
<tr> |
|
<td rowspan="2"><b>Text</b></td> |
|
<td>MGSM (CoT)</td> |
|
<td>68.60</td> |
|
<td>67.78</td> |
|
<td>98.80%</td> |
|
</tr> |
|
<tr> |
|
<td>MMLU (5-shot)</td> |
|
<td>82.70</td> |
|
<td>82.60</td> |
|
<td>99.88%</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
|
|
## Inference Performance |
|
|
|
|
|
This model achieves up to 1.84x speedup in single-stream deployment and up to 1.85x speedup in multi-stream asynchronous deployment, depending on hardware and use-case scenario. |
|
The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm). |
|
|
|
<details> |
|
<summary>Benchmarking Command</summary> |
|
``` |
|
guidellm --model neuralmagic/Qwen2-VL-72B-Instruct-FP8-Dynamic --target "http://localhost:8000/v1" --data-type emulated --data prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>,images=<num_images>,width=<image_width>,height=<image_height> --max seconds 120 --backend aiohttp_server |
|
``` |
|
|
|
</details> |
|
|
|
|
|
### Single-stream performance (measured with vLLM version 0.7.2) |
|
|
|
<table border="1" class="dataframe"> |
|
<thead> |
|
<tr> |
|
<th></th> |
|
<th></th> |
|
<th></th> |
|
<th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th> |
|
<th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th> |
|
<th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th> |
|
</tr> |
|
<tr> |
|
<th>Hardware</th> |
|
<th>Number of GPUs</th> |
|
<th>Model</th> |
|
<th>Average Cost Reduction</th> |
|
<th>Latency (s)</th> |
|
<th>QPD</th> |
|
<th>Latency (s)th> |
|
<th>QPD</th> |
|
<th>Latency (s)</th> |
|
<th>QPD</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<th rowspan="3" valign="top">A100</th> |
|
<td>4</td> |
|
<td>Qwen/Qwen2-VL-72B-Instruct</td> |
|
<td></td> |
|
<td>6.5</td> |
|
<td>77</td> |
|
<td>4.6</td> |
|
<td>110</td> |
|
<td>4.4</td> |
|
<td>113</td> |
|
</tr> |
|
<tr> |
|
<td>2</td> |
|
<td>neuralmagic/Qwen2-VL-72B-Instruct-quantized.w8a8</td> |
|
<td>1.85</td> |
|
<td>7.2</td> |
|
<td>139</td> |
|
<td>4.9</td> |
|
<td>206</td> |
|
<td>4.8</td> |
|
<td>211</td> |
|
</tr> |
|
<tr> |
|
<td>1</td> |
|
<td>neuralmagic/Qwen2-VL-72B-Instruct-quantized.w4a16</td> |
|
<td>3.32</td> |
|
<td>10.0</td> |
|
<td>202</td> |
|
<td>5.0</td> |
|
<td>398</td> |
|
<td>4.8</td> |
|
<td>419</td> |
|
</tr> |
|
<tr> |
|
<th rowspan="3" valign="top">H100</td> |
|
<td>4</td> |
|
<td>Qwen/Qwen2-VL-72B-Instruct</td> |
|
<td></td> |
|
<td>4.4</td> |
|
<td>66</td> |
|
<td>3.0</td> |
|
<td>97</td> |
|
<td>2.9</td> |
|
<td>99</td> |
|
</tr> |
|
<tr> |
|
<td>2</td> |
|
<td>neuralmagic/Qwen2-VL-72B-Instruct-FP8-Dynamic</td> |
|
<td>1.79</td> |
|
<td>4.7</td> |
|
<td>119</td> |
|
<td>3.3</td> |
|
<td>173</td> |
|
<td>3.2</td> |
|
<td>177</td> |
|
</tr> |
|
<tr> |
|
<td>1</td> |
|
<td>neuralmagic/Qwen2-VL-72B-Instruct-quantized.w4a16</td> |
|
<td>2.60</td> |
|
<td>6.4</td> |
|
<td>172</td> |
|
<td>4.3</td> |
|
<td>253</td> |
|
<td>4.2</td> |
|
<td>259</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens |
|
|
|
**QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025). |
|
|
|
### Multi-stream asynchronous performance (measured with vLLM version 0.7.2) |
|
|
|
<table border="1" class="dataframe"> |
|
<thead> |
|
<tr> |
|
<th></th> |
|
<th></th> |
|
<th></th> |
|
<th style="text-align: center;" colspan="2" >Document Visual Question Answering<br>1680W x 2240H<br>64/128</th> |
|
<th style="text-align: center;" colspan="2" >Visual Reasoning <br>640W x 480H<br>128/128</th> |
|
<th style="text-align: center;" colspan="2" >Image Captioning<br>480W x 360H<br>0/128</th> |
|
</tr> |
|
<tr> |
|
<th>Hardware</th> |
|
<th>Model</th> |
|
<th>Average Cost Reduction</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>QPD</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>QPD</th> |
|
<th>Maximum throughput (QPS)</th> |
|
<th>QPD</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<th rowspan="3" valign="top">A100x4</th> |
|
<td>Qwen/Qwen2-VL-72B-Instruct</td> |
|
<td></td> |
|
<td>0.3</td> |
|
<td>169</td> |
|
<td>1.1</td> |
|
<td>538</td> |
|
<td>1.2</td> |
|
<td>595</td> |
|
</tr> |
|
<tr> |
|
<td>neuralmagic/Qwen2-VL-72B-Instruct-quantized.w8a8</td> |
|
<td>1.84</td> |
|
<td>0.6</td> |
|
<td>293</td> |
|
<td>2.0</td> |
|
<td>1021</td> |
|
<td>2.3</td> |
|
<td>1135</td> |
|
</tr> |
|
<tr> |
|
<td>neuralmagic/Qwen2-VL-72B-Instruct-quantized.w4a16</td> |
|
<td>2.73</td> |
|
<td>0.6</td> |
|
<td>314</td> |
|
<td>3.2</td> |
|
<td>1591</td> |
|
<td>4.0</td> |
|
<td>2019</td> |
|
</tr> |
|
<tr> |
|
<th rowspan="3" valign="top">H100x4</td> |
|
<td>Qwen/Qwen2-VL-72B-Instruct</td> |
|
<td></td> |
|
<td>0.5</td> |
|
<td>137</td> |
|
<td>1.2</td> |
|
<td>356</td> |
|
<td>1.3</td> |
|
<td>377</td> |
|
</tr> |
|
<tr> |
|
<td>neuralmagic/Qwen2-VL-72B-Instruct-FP8-Dynamic</td> |
|
<td>1.70</td> |
|
<td>0.8</td> |
|
<td>236</td> |
|
<td>2.2</td> |
|
<td>623</td> |
|
<td>2.4</td> |
|
<td>669</td> |
|
</tr> |
|
<tr> |
|
<td>neuralmagic/Qwen2-VL-72B-Instruct-quantized.w4a16</td> |
|
<td>2.35</td> |
|
<td>1.3</td> |
|
<td>350</td> |
|
<td>3.3</td> |
|
<td>910</td> |
|
<td>3.6</td> |
|
<td>994</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
**Use case profiles: Image Size (WxH) / prompt tokens / generation tokens |
|
|
|
**QPS: Queries per second. |
|
|
|
**QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025). |
|
|