--- tags: - w4a16 - int4 - vllm - vision license: apache-2.0 license_link: https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md language: - en base_model: microsoft/Phi-3-vision-128k-instruct library_name: transformers --- # Phi-3-vision-128k-instruct-W4A16-G128 ## Model Overview - **Model Architecture:** Phi-3-vision-128k-instruct - **Input:** Vision-Text - **Output:** Text - **Model Optimizations:** - **Weight quantization:** INT4 - **Activation quantization:** FP16 - **Release Date:** 1/31/2025 - **Version:** 1.0 - **Model Developers:** Neural Magic Quantized version of [microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct). ### Model Optimizations This model was obtained by quantizing the weights of [microsoft/Phi-3-vision-128k-instruct](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct) to INT4 data type, ready for inference with vLLM >= 0.5.2. ## Deployment ### Use with vLLM This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. ```python from vllm.assets.image import ImageAsset from vllm import LLM, SamplingParams # prepare model llm = LLM( model="neuralmagic/Phi-3-vision-128k-instruct-W4A16-G128", trust_remote_code=True, max_model_len=4096, max_num_seqs=2, ) # prepare inputs question = "What is the content of this image?" inputs = { "prompt": f"<|user|>\n<|image_1|>\n{question}<|end|>\n<|assistant|>\n", "multi_modal_data": { "image": ImageAsset("cherry_blossom").pil_image.convert("RGB") }, } # generate response print("========== SAMPLE GENERATION ==============") outputs = llm.generate(inputs, SamplingParams(temperature=0.2, max_tokens=64)) print(f"PROMPT : {outputs[0].prompt}") print(f"RESPONSE: {outputs[0].outputs[0].text}") print("==========================================") ``` vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. ## Creation This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below as part a multimodal announcement blog. ```python import torch from datasets import load_dataset from transformers import AutoModelForCausalLM, AutoProcessor from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.transformers import oneshot # Load model. model_id = "microsoft/Phi-3-vision-128k-instruct" model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype="auto", trust_remote_code=True, _attn_implementation="eager", ) processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) processor.chat_template = processor.tokenizer.chat_template # Calibration dataset arguments DATASET_ID = "lmms-lab/flickr30k" DATASET_SPLIT = "test[:512]" NUM_CALIBRATION_SAMPLES = 512 MAX_SEQUENCE_LENGTH = 2048 # Load dataset and preprocess. ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) # Apply chat template and tokenize inputs. def preprocess_and_tokenize(example): messages = [{"role": "user", "content": "<|image_1|>\nWhat does the image show?"}] text = processor.apply_chat_template( messages, add_generation_prompt=True, ) images = example["image"] return processor( text=text, images=images, padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, ) ds = ds.map(preprocess_and_tokenize, writer_batch_size=1, remove_columns=ds.column_names) # Define a oneshot data collator for multimodal inputs. def data_collator(batch): assert len(batch) == 1 return {key: torch.tensor(value) for key, value in batch[0].items()} # Recipe recipe = GPTQModifier( targets="Linear", scheme="W4A16", sequential_targets=["Phi3DecoderLayer"], ignore=["lm_head", "re:model.vision_embed_tokens.*"], ) # Perform oneshot SAVE_DIR = model_id.split("/")[1] + "-W4A16-G128" oneshot( model=model, processor=processor, dataset=ds, recipe=recipe, max_seq_length=MAX_SEQUENCE_LENGTH, num_calibration_samples=NUM_CALIBRATION_SAMPLES, trust_remote_code_model=True, data_collator=data_collator, output_dir=SAVE_DIR ) ``` ## License The model is licensed under the [MIT license](https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/resolve/main/LICENSE). ## Trademarks This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft’s Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party’s policies.