--- tags: - fp8 - vllm --- # Mixtral-8x22B-Instruct-v0.1-FP8 ## Model Overview Mixtral-8x22B-Instruct-v0.1 quantized to FP8 weights and activations using per-tensor quantization, ready for inference with vLLM >= 0.5.0. ## Usage and Creation Produced using [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py). ## Evaluation ### Open LLM Leaderboard evaluation scores | | Meta-Llama-3-70B-Instruct | Meta-Llama-3-70B-Instruct-FP8
(this model) | | :------------------: | :----------------------: | :------------------------------------------------: | | arc-c
25-shot | 71.58 | 72.09 | | hellaswag
10-shot | 86.94 | 86.83 | | mmlu
5-shot | 83.97 | 84.06 | | truthfulqa
0-shot | 66.98 | 66.95 | | winogrande
5-shot | 82.79 | 83.18 | | gsm8k
5-shot | 87.56 | 88.93 | | **Average
Accuracy** | **79.97** | **80.34** | | **Recovery** | **100%** | **100.46%** |