|
--- |
|
tags: |
|
- fp8 |
|
- vllm |
|
--- |
|
|
|
# Mixtral-8x22B-Instruct-v0.1-FP8 |
|
|
|
## Model Overview |
|
Mixtral-8x22B-Instruct-v0.1 quantized to FP8 weights and activations using per-tensor quantization, ready for inference with vLLM >= 0.5.0. |
|
|
|
## Usage and Creation |
|
Produced using [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py). |
|
|
|
## Evaluation |
|
|
|
### Open LLM Leaderboard evaluation scores |
|
| | Meta-Llama-3-70B-Instruct | Meta-Llama-3-70B-Instruct-FP8<br>(this model) | |
|
| :------------------: | :----------------------: | :------------------------------------------------: | |
|
| arc-c<br>25-shot | 71.58 | 72.09 | |
|
| hellaswag<br>10-shot | 86.94 | 86.83 | |
|
| mmlu<br>5-shot | 83.97 | 84.06 | |
|
| truthfulqa<br>0-shot | 66.98 | 66.95 | |
|
| winogrande<br>5-shot | 82.79 | 83.18 | |
|
| gsm8k<br>5-shot | 87.56 | 88.93 | |
|
| **Average<br>Accuracy** | **79.97** | **80.34** | |
|
| **Recovery** | **100%** | **100.46%** | |
|
|
|
|