Update README.md
Browse files
README.md
CHANGED
@@ -9,4 +9,142 @@ tags:
|
|
9 |
- mistral-small
|
10 |
- fp8
|
11 |
- vllm
|
12 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
- mistral-small
|
10 |
- fp8
|
11 |
- vllm
|
12 |
+
---
|
13 |
+
|
14 |
+
# Mistral-Small-24B-Instruct-2501-FP8-Dynamic
|
15 |
+
|
16 |
+
## Model Overview
|
17 |
+
- **Model Architecture:** Mistral-Small-24B-Instruct-2501
|
18 |
+
- **Input:** Text
|
19 |
+
- **Output:** Text
|
20 |
+
- **Model Optimizations:**
|
21 |
+
- **Weight quantization:** FP8
|
22 |
+
- **Activation quantization:** FP8
|
23 |
+
- **Release Date:** 3/1/2025
|
24 |
+
- **Version:** 1.0
|
25 |
+
- **Model Developers:** Neural Magic
|
26 |
+
|
27 |
+
Quantized version of [Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501).
|
28 |
+
It achieves a flexible-extract filter score of 0.9030 on the evaluated on [GSM8k](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/gsm8k) task, where as the unquantized model achieves a flexible-extract filter score of 0.9060.
|
29 |
+
|
30 |
+
### Model Optimizations
|
31 |
+
|
32 |
+
This model was obtained by quantizing the weights and activations to FP8 data type, ready for inference with vLLM >= 0.5.2.
|
33 |
+
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized.
|
34 |
+
|
35 |
+
## Deployment
|
36 |
+
|
37 |
+
### Use with vLLM
|
38 |
+
|
39 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import AutoTokenizer
|
43 |
+
from vllm import LLM, SamplingParams
|
44 |
+
|
45 |
+
max_model_len, tp_size = 4096, 1
|
46 |
+
model_name = "nm-testing/Mistral-Small-24B-Instruct-2501-FP8-Dynamic
|
47 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
48 |
+
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True)
|
49 |
+
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
|
50 |
+
|
51 |
+
messages_list = [
|
52 |
+
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
|
53 |
+
]
|
54 |
+
|
55 |
+
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
|
56 |
+
|
57 |
+
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
|
58 |
+
|
59 |
+
generated_text = [output.outputs[0].text for output in outputs]
|
60 |
+
print(generated_text)
|
61 |
+
```
|
62 |
+
|
63 |
+
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
64 |
+
|
65 |
+
## Creation
|
66 |
+
|
67 |
+
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
68 |
+
|
69 |
+
|
70 |
+
```python
|
71 |
+
import argparse
|
72 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
73 |
+
from llmcompressor.modifiers.quantization import QuantizationModifier
|
74 |
+
from llmcompressor.transformers import oneshot
|
75 |
+
import os
|
76 |
+
|
77 |
+
def main():
|
78 |
+
parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8')
|
79 |
+
parser.add_argument('--model_id', type=str, required=True,
|
80 |
+
help='The model ID from HuggingFace (e.g., "mistralai/Mistral-Small-24B-Instruct-2501")')
|
81 |
+
parser.add_argument('--save_path', type=str, default='.',
|
82 |
+
help='Custom path to save the quantized model. If not provided, will use model_name-FP8-dynamic')
|
83 |
+
args = parser.parse_args()
|
84 |
+
|
85 |
+
# Load model
|
86 |
+
model = AutoModelForCausalLM.from_pretrained(
|
87 |
+
args.model_id, device_map="auto", torch_dtype="auto", trust_remote_code=True,
|
88 |
+
)
|
89 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_id)
|
90 |
+
|
91 |
+
# Configure the quantization algorithm and scheme
|
92 |
+
recipe = QuantizationModifier(
|
93 |
+
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"]
|
94 |
+
)
|
95 |
+
|
96 |
+
# Apply quantization
|
97 |
+
oneshot(model=model, recipe=recipe)
|
98 |
+
|
99 |
+
save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8-dynamic")
|
100 |
+
os.makedirs(save_path, exist_ok=True)
|
101 |
+
|
102 |
+
# Save to disk in compressed-tensors format
|
103 |
+
model.save_pretrained(save_path)
|
104 |
+
tokenizer.save_pretrained(save_path)
|
105 |
+
print(f"Model and tokenizer saved to: {save_path}")
|
106 |
+
|
107 |
+
if __name__ == "__main__":
|
108 |
+
main()
|
109 |
+
```
|
110 |
+
|
111 |
+
## Evaluation
|
112 |
+
|
113 |
+
The optimized model was evaluated on GSM8k task with the flexible-extract filter score of 0.9030 ± 0.0082, and strict-match filter score of 0.8976 ± 0.0083, where as the unquantized model with the flexible-extract filter score of 0.9060 ± .0080, and strict-match filter score of 0.8992 ± 0.0083.
|
114 |
+
|
115 |
+
Evaluations were carried out using the following commands.
|
116 |
+
|
117 |
+
For the quantized model:
|
118 |
+
```
|
119 |
+
lm_eval \
|
120 |
+
--model vllm \
|
121 |
+
--model_args pretrained="nm-testing/Mistral-Small-24B-Instruct-2501-FP8-Dynamic",add_bos_token=True \
|
122 |
+
--tasks gsm8k \
|
123 |
+
--batch_size auto
|
124 |
+
```
|
125 |
+
|
126 |
+
For the unquantized model
|
127 |
+
```
|
128 |
+
lm_eval \
|
129 |
+
--model vllm \
|
130 |
+
--model_args pretrained="mistralai/Mistral-Small-24B-Instruct-2501",add_bos_token=True \
|
131 |
+
--tasks gsm8k \
|
132 |
+
--batch_size auto
|
133 |
+
|
134 |
+
```
|
135 |
+
|
136 |
+
### Accuracy
|
137 |
+
|
138 |
+
#### GSM8k evaluation scores for the optimized model
|
139 |
+
|
140 |
+
|Tasks|Version| Filter |n-shot| Metric | |Value | |Stderr|
|
141 |
+
|-----|------:|----------------|-----:|-----------|---|-----:|---|-----:|
|
142 |
+
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.9030|± |0.0082|
|
143 |
+
| | |strict-match | 5|exact_match|↑ |0.8976|± |0.0083|
|
144 |
+
|
145 |
+
#### GSM8k evaluation scores for the unquantized model
|
146 |
+
|
147 |
+
|Tasks|Version| Filter |n-shot| Metric | |Value | |Stderr|
|
148 |
+
|-----|------:|----------------|-----:|-----------|---|-----:|---|-----:|
|
149 |
+
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.9060|± |0.0080|
|
150 |
+
| | |strict-match | 5|exact_match|↑ |0.8992|± |0.0083|
|