Update README.md
Browse files
README.md
CHANGED
@@ -32,7 +32,7 @@ base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
|
|
32 |
- **Model Developers:** Neural Magic
|
33 |
|
34 |
Quantized version of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
|
35 |
-
It achieves an average score of
|
36 |
|
37 |
### Model Optimizations
|
38 |
|
@@ -129,6 +129,8 @@ The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande an
|
|
129 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
130 |
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals).
|
131 |
|
|
|
|
|
132 |
### Accuracy
|
133 |
|
134 |
#### Open LLM Leaderboard evaluation scores
|
@@ -146,29 +148,29 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
146 |
<tr>
|
147 |
<td>MMLU (5-shot)
|
148 |
</td>
|
149 |
-
<td>
|
150 |
</td>
|
151 |
-
<td>
|
152 |
</td>
|
153 |
-
<td>97.
|
154 |
</td>
|
155 |
</tr>
|
156 |
<tr>
|
157 |
<td>MMLU (CoT, 0-shot)
|
158 |
</td>
|
159 |
-
<td>72.
|
160 |
</td>
|
161 |
-
<td>
|
162 |
</td>
|
163 |
-
<td>97.
|
164 |
</td>
|
165 |
</tr>
|
166 |
<tr>
|
167 |
<td>ARC Challenge (0-shot)
|
168 |
</td>
|
169 |
-
<td>81.
|
170 |
</td>
|
171 |
-
<td>
|
172 |
</td>
|
173 |
<td>98.0%
|
174 |
</td>
|
@@ -178,49 +180,49 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
178 |
</td>
|
179 |
<td>82.79
|
180 |
</td>
|
181 |
-
<td>
|
182 |
</td>
|
183 |
-
<td>
|
184 |
</td>
|
185 |
</tr>
|
186 |
<tr>
|
187 |
<td>Hellaswag (10-shot)
|
188 |
</td>
|
189 |
-
<td>80.
|
190 |
</td>
|
191 |
-
<td>78.
|
192 |
</td>
|
193 |
-
<td>
|
194 |
</td>
|
195 |
</tr>
|
196 |
<tr>
|
197 |
<td>Winogrande (5-shot)
|
198 |
</td>
|
199 |
-
<td>
|
200 |
</td>
|
201 |
-
<td>76.
|
202 |
</td>
|
203 |
-
<td>
|
204 |
</td>
|
205 |
</tr>
|
206 |
<tr>
|
207 |
<td>TruthfulQA (0-shot, mc2)
|
208 |
</td>
|
209 |
-
<td>54.
|
210 |
</td>
|
211 |
<td>50.46
|
212 |
</td>
|
213 |
-
<td>
|
214 |
</td>
|
215 |
</tr>
|
216 |
<tr>
|
217 |
<td><strong>Average</strong>
|
218 |
</td>
|
219 |
-
<td><strong>74.
|
220 |
</td>
|
221 |
-
<td><strong>
|
222 |
</td>
|
223 |
-
<td><strong>97.
|
224 |
</td>
|
225 |
</tr>
|
226 |
</table>
|
@@ -233,7 +235,7 @@ The results were obtained using the following commands:
|
|
233 |
```
|
234 |
lm_eval \
|
235 |
--model vllm \
|
236 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,
|
237 |
--tasks mmlu_llama_3.1_instruct \
|
238 |
--fewshot_as_multiturn \
|
239 |
--apply_chat_template \
|
@@ -245,7 +247,7 @@ lm_eval \
|
|
245 |
```
|
246 |
lm_eval \
|
247 |
--model vllm \
|
248 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,
|
249 |
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
250 |
--apply_chat_template \
|
251 |
--num_fewshot 0 \
|
@@ -256,7 +258,7 @@ lm_eval \
|
|
256 |
```
|
257 |
lm_eval \
|
258 |
--model vllm \
|
259 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,
|
260 |
--tasks arc_challenge_llama_3.1_instruct \
|
261 |
--apply_chat_template \
|
262 |
--num_fewshot 0 \
|
@@ -267,7 +269,7 @@ lm_eval \
|
|
267 |
```
|
268 |
lm_eval \
|
269 |
--model vllm \
|
270 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,
|
271 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
272 |
--fewshot_as_multiturn \
|
273 |
--apply_chat_template \
|
|
|
32 |
- **Model Developers:** Neural Magic
|
33 |
|
34 |
Quantized version of [Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct).
|
35 |
+
It achieves an average score of 72.58 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 74.25.
|
36 |
|
37 |
### Model Optimizations
|
38 |
|
|
|
129 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
130 |
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-8B-Instruct-evals).
|
131 |
|
132 |
+
**Note:** Results have been updated after Meta modified the chat template.
|
133 |
+
|
134 |
### Accuracy
|
135 |
|
136 |
#### Open LLM Leaderboard evaluation scores
|
|
|
148 |
<tr>
|
149 |
<td>MMLU (5-shot)
|
150 |
</td>
|
151 |
+
<td>68.32
|
152 |
</td>
|
153 |
+
<td>66.89
|
154 |
</td>
|
155 |
+
<td>97.9%
|
156 |
</td>
|
157 |
</tr>
|
158 |
<tr>
|
159 |
<td>MMLU (CoT, 0-shot)
|
160 |
</td>
|
161 |
+
<td>72.83
|
162 |
</td>
|
163 |
+
<td>71.06
|
164 |
</td>
|
165 |
+
<td>97.6%
|
166 |
</td>
|
167 |
</tr>
|
168 |
<tr>
|
169 |
<td>ARC Challenge (0-shot)
|
170 |
</td>
|
171 |
+
<td>81.40
|
172 |
</td>
|
173 |
+
<td>80.20
|
174 |
</td>
|
175 |
<td>98.0%
|
176 |
</td>
|
|
|
180 |
</td>
|
181 |
<td>82.79
|
182 |
</td>
|
183 |
+
<td>82.94
|
184 |
</td>
|
185 |
+
<td>100.2%
|
186 |
</td>
|
187 |
</tr>
|
188 |
<tr>
|
189 |
<td>Hellaswag (10-shot)
|
190 |
</td>
|
191 |
+
<td>80.47
|
192 |
</td>
|
193 |
+
<td>78.59
|
194 |
</td>
|
195 |
+
<td>97.7%
|
196 |
</td>
|
197 |
</tr>
|
198 |
<tr>
|
199 |
<td>Winogrande (5-shot)
|
200 |
</td>
|
201 |
+
<td>78.06
|
202 |
</td>
|
203 |
+
<td>76.40
|
204 |
</td>
|
205 |
+
<td>97.9%
|
206 |
</td>
|
207 |
</tr>
|
208 |
<tr>
|
209 |
<td>TruthfulQA (0-shot, mc2)
|
210 |
</td>
|
211 |
+
<td>54.48
|
212 |
</td>
|
213 |
<td>50.46
|
214 |
</td>
|
215 |
+
<td>92.6%
|
216 |
</td>
|
217 |
</tr>
|
218 |
<tr>
|
219 |
<td><strong>Average</strong>
|
220 |
</td>
|
221 |
+
<td><strong>74.25</strong>
|
222 |
</td>
|
223 |
+
<td><strong>72.58</strong>
|
224 |
</td>
|
225 |
+
<td><strong>97.7%</strong>
|
226 |
</td>
|
227 |
</tr>
|
228 |
</table>
|
|
|
235 |
```
|
236 |
lm_eval \
|
237 |
--model vllm \
|
238 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
|
239 |
--tasks mmlu_llama_3.1_instruct \
|
240 |
--fewshot_as_multiturn \
|
241 |
--apply_chat_template \
|
|
|
247 |
```
|
248 |
lm_eval \
|
249 |
--model vllm \
|
250 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=1 \
|
251 |
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
252 |
--apply_chat_template \
|
253 |
--num_fewshot 0 \
|
|
|
258 |
```
|
259 |
lm_eval \
|
260 |
--model vllm \
|
261 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=1 \
|
262 |
--tasks arc_challenge_llama_3.1_instruct \
|
263 |
--apply_chat_template \
|
264 |
--num_fewshot 0 \
|
|
|
269 |
```
|
270 |
lm_eval \
|
271 |
--model vllm \
|
272 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-8B-Instruct-quantized.w4a16",dtype=auto,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=1 \
|
273 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
274 |
--fewshot_as_multiturn \
|
275 |
--apply_chat_template \
|