Update README.md
Browse files
README.md
CHANGED
@@ -32,7 +32,7 @@ base_model: meta-llama/Meta-Llama-3.1-70B-Instruct
|
|
32 |
- **Model Developers:** Neural Magic
|
33 |
|
34 |
Quantized version of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
|
35 |
-
It achieves scores within 1
|
36 |
|
37 |
### Model Optimizations
|
38 |
|
@@ -136,6 +136,8 @@ The model was evaluated on MMLU, ARC-Challenge, GSM-8K, Hellaswag, Winogrande an
|
|
136 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
137 |
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-70B-Instruct-evals).
|
138 |
|
|
|
|
|
139 |
### Accuracy
|
140 |
|
141 |
#### Open LLM Leaderboard evaluation scores
|
@@ -153,81 +155,81 @@ This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challen
|
|
153 |
<tr>
|
154 |
<td>MMLU (5-shot)
|
155 |
</td>
|
156 |
-
<td>83.
|
157 |
</td>
|
158 |
-
<td>81.
|
159 |
</td>
|
160 |
-
<td>96.
|
161 |
</td>
|
162 |
</tr>
|
163 |
<tr>
|
164 |
<td>MMLU (CoT, 0-shot)
|
165 |
</td>
|
166 |
-
<td>
|
167 |
</td>
|
168 |
-
<td>83.
|
169 |
</td>
|
170 |
-
<td>97.
|
171 |
</td>
|
172 |
</tr>
|
173 |
<tr>
|
174 |
<td>ARC Challenge (0-shot)
|
175 |
</td>
|
176 |
-
<td>93.
|
177 |
</td>
|
178 |
-
<td>
|
179 |
</td>
|
180 |
-
<td>98.
|
181 |
</td>
|
182 |
</tr>
|
183 |
<tr>
|
184 |
<td>GSM-8K (CoT, 8-shot, strict-match)
|
185 |
</td>
|
186 |
-
<td>
|
187 |
</td>
|
188 |
-
<td>
|
189 |
</td>
|
190 |
-
<td>
|
191 |
</td>
|
192 |
</tr>
|
193 |
<tr>
|
194 |
<td>Hellaswag (10-shot)
|
195 |
</td>
|
196 |
-
<td>86.
|
197 |
</td>
|
198 |
-
<td>86.
|
199 |
</td>
|
200 |
-
<td>99.
|
201 |
</td>
|
202 |
</tr>
|
203 |
<tr>
|
204 |
<td>Winogrande (5-shot)
|
205 |
</td>
|
206 |
-
<td>85.
|
207 |
</td>
|
208 |
<td>84.14
|
209 |
</td>
|
210 |
-
<td>
|
211 |
</td>
|
212 |
</tr>
|
213 |
<tr>
|
214 |
-
|
215 |
</td>
|
216 |
-
<td>
|
217 |
</td>
|
218 |
-
<td>58.
|
219 |
</td>
|
220 |
-
<td>
|
221 |
</td>
|
222 |
</tr>
|
223 |
<tr>
|
224 |
<td><strong>Average</strong>
|
225 |
</td>
|
226 |
-
<td><strong>
|
227 |
</td>
|
228 |
-
<td><strong>82.
|
229 |
</td>
|
230 |
-
<td><strong>98.
|
231 |
</td>
|
232 |
</tr>
|
233 |
</table>
|
@@ -240,7 +242,7 @@ The results were obtained using the following commands:
|
|
240 |
```
|
241 |
lm_eval \
|
242 |
--model vllm \
|
243 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,
|
244 |
--tasks mmlu_llama_3.1_instruct \
|
245 |
--fewshot_as_multiturn \
|
246 |
--apply_chat_template \
|
@@ -252,7 +254,7 @@ lm_eval \
|
|
252 |
```
|
253 |
lm_eval \
|
254 |
--model vllm \
|
255 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,
|
256 |
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
257 |
--apply_chat_template \
|
258 |
--num_fewshot 0 \
|
@@ -263,7 +265,7 @@ lm_eval \
|
|
263 |
```
|
264 |
lm_eval \
|
265 |
--model vllm \
|
266 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,
|
267 |
--tasks arc_challenge_llama_3.1_instruct \
|
268 |
--apply_chat_template \
|
269 |
--num_fewshot 0 \
|
@@ -274,7 +276,7 @@ lm_eval \
|
|
274 |
```
|
275 |
lm_eval \
|
276 |
--model vllm \
|
277 |
-
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,
|
278 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
279 |
--fewshot_as_multiturn \
|
280 |
--apply_chat_template \
|
|
|
32 |
- **Model Developers:** Neural Magic
|
33 |
|
34 |
Quantized version of [Meta-Llama-3.1-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-70B-Instruct).
|
35 |
+
It achieves scores within 3.1% of the scores of the unquantized model for MMLU, ARC-Challenge, GSM-8k, Hellaswag, Winogrande and TruthfulQA.
|
36 |
|
37 |
### Model Optimizations
|
38 |
|
|
|
136 |
Evaluation was conducted using the Neural Magic fork of [lm-evaluation-harness](https://github.com/neuralmagic/lm-evaluation-harness/tree/llama_3.1_instruct) (branch llama_3.1_instruct) and the [vLLM](https://docs.vllm.ai/en/stable/) engine.
|
137 |
This version of the lm-evaluation-harness includes versions of MMLU, ARC-Challenge and GSM-8K that match the prompting style of [Meta-Llama-3.1-Instruct-evals](https://huggingface.co/datasets/meta-llama/Meta-Llama-3.1-70B-Instruct-evals).
|
138 |
|
139 |
+
**Note:** Results have been updated after Meta modified the chat template.
|
140 |
+
|
141 |
### Accuracy
|
142 |
|
143 |
#### Open LLM Leaderboard evaluation scores
|
|
|
155 |
<tr>
|
156 |
<td>MMLU (5-shot)
|
157 |
</td>
|
158 |
+
<td>83.94
|
159 |
</td>
|
160 |
+
<td>81.37
|
161 |
</td>
|
162 |
+
<td>96.9%
|
163 |
</td>
|
164 |
</tr>
|
165 |
<tr>
|
166 |
<td>MMLU (CoT, 0-shot)
|
167 |
</td>
|
168 |
+
<td>86.23
|
169 |
</td>
|
170 |
+
<td>83.86
|
171 |
</td>
|
172 |
+
<td>97.2%
|
173 |
</td>
|
174 |
</tr>
|
175 |
<tr>
|
176 |
<td>ARC Challenge (0-shot)
|
177 |
</td>
|
178 |
+
<td>93.34
|
179 |
</td>
|
180 |
+
<td>92.32
|
181 |
</td>
|
182 |
+
<td>98.9%
|
183 |
</td>
|
184 |
</tr>
|
185 |
<tr>
|
186 |
<td>GSM-8K (CoT, 8-shot, strict-match)
|
187 |
</td>
|
188 |
+
<td>95.38
|
189 |
</td>
|
190 |
+
<td>93.25
|
191 |
</td>
|
192 |
+
<td>97.8%
|
193 |
</td>
|
194 |
</tr>
|
195 |
<tr>
|
196 |
<td>Hellaswag (10-shot)
|
197 |
</td>
|
198 |
+
<td>86.66
|
199 |
</td>
|
200 |
+
<td>86.16
|
201 |
</td>
|
202 |
+
<td>99.4%
|
203 |
</td>
|
204 |
</tr>
|
205 |
<tr>
|
206 |
<td>Winogrande (5-shot)
|
207 |
</td>
|
208 |
+
<td>85.32
|
209 |
</td>
|
210 |
<td>84.14
|
211 |
</td>
|
212 |
+
<td>98.6%
|
213 |
</td>
|
214 |
</tr>
|
215 |
<tr>
|
216 |
+
<td>TruthfulQA (0-shot, mc2)
|
217 |
</td>
|
218 |
+
<td>60.65
|
219 |
</td>
|
220 |
+
<td>58.89
|
221 |
</td>
|
222 |
+
<td>97.1%
|
223 |
</td>
|
224 |
</tr>
|
225 |
<tr>
|
226 |
<td><strong>Average</strong>
|
227 |
</td>
|
228 |
+
<td><strong>84.50</strong>
|
229 |
</td>
|
230 |
+
<td><strong>82.85</strong>
|
231 |
</td>
|
232 |
+
<td><strong>98.0%</strong>
|
233 |
</td>
|
234 |
</tr>
|
235 |
</table>
|
|
|
242 |
```
|
243 |
lm_eval \
|
244 |
--model vllm \
|
245 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
|
246 |
--tasks mmlu_llama_3.1_instruct \
|
247 |
--fewshot_as_multiturn \
|
248 |
--apply_chat_template \
|
|
|
254 |
```
|
255 |
lm_eval \
|
256 |
--model vllm \
|
257 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=1 \
|
258 |
--tasks mmlu_cot_0shot_llama_3.1_instruct \
|
259 |
--apply_chat_template \
|
260 |
--num_fewshot 0 \
|
|
|
265 |
```
|
266 |
lm_eval \
|
267 |
--model vllm \
|
268 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=1 \
|
269 |
--tasks arc_challenge_llama_3.1_instruct \
|
270 |
--apply_chat_template \
|
271 |
--num_fewshot 0 \
|
|
|
276 |
```
|
277 |
lm_eval \
|
278 |
--model vllm \
|
279 |
+
--model_args pretrained="neuralmagic/Meta-Llama-3.1-70B-Instruct-quantized.w8a16",dtype=auto,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=1 \
|
280 |
--tasks gsm8k_cot_llama_3.1_instruct \
|
281 |
--fewshot_as_multiturn \
|
282 |
--apply_chat_template \
|