Update README.md
Browse files
README.md
CHANGED
@@ -8,29 +8,33 @@ base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
|
|
8 |
library_name: transformers
|
9 |
---
|
10 |
|
11 |
-
# DeepSeek-R1-Distill-Qwen-14B-FP8-
|
12 |
|
13 |
## Model Overview
|
14 |
-
- **Model Architecture:**
|
15 |
- **Input:** Text
|
16 |
- **Output:** Text
|
17 |
- **Model Optimizations:**
|
18 |
- **Weight quantization:** FP8
|
19 |
- **Activation quantization:** FP8
|
20 |
-
- **Release Date:** 2/
|
21 |
- **Version:** 1.0
|
22 |
- **Model Developers:** Neural Magic
|
23 |
|
24 |
Quantized version of [DeepSeek-R1-Distill-Qwen-14B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B).
|
25 |
|
|
|
26 |
### Model Optimizations
|
27 |
|
28 |
-
This model was obtained by quantizing the weights and activations to FP8 data type
|
29 |
-
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
## Deployment
|
32 |
|
33 |
-
|
34 |
|
35 |
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
36 |
|
@@ -38,11 +42,12 @@ This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/
|
|
38 |
from transformers import AutoTokenizer
|
39 |
from vllm import LLM, SamplingParams
|
40 |
|
41 |
-
|
42 |
-
model_name = "neuralmagic
|
|
|
43 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
44 |
-
|
45 |
-
|
46 |
|
47 |
messages_list = [
|
48 |
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
|
@@ -64,44 +69,40 @@ This model was created with [llm-compressor](https://github.com/vllm-project/llm
|
|
64 |
|
65 |
|
66 |
```python
|
67 |
-
import argparse
|
68 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
69 |
from llmcompressor.modifiers.quantization import QuantizationModifier
|
70 |
from llmcompressor.transformers import oneshot
|
71 |
import os
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
if __name__ == "__main__":
|
104 |
-
main()
|
105 |
```
|
106 |
|
107 |
## Evaluation
|
@@ -112,7 +113,7 @@ OpenLLM Leaderboard V1:
|
|
112 |
```
|
113 |
lm_eval \
|
114 |
--model vllm \
|
115 |
-
--model_args pretrained="neuralmagic
|
116 |
--tasks openllm \
|
117 |
--write_out \
|
118 |
--batch_size auto \
|
@@ -124,7 +125,7 @@ OpenLLM Leaderboard V2:
|
|
124 |
```
|
125 |
lm_eval \
|
126 |
--model vllm \
|
127 |
-
--model_args pretrained="neuralmagic
|
128 |
--apply_chat_template \
|
129 |
--fewshot_as_multiturn \
|
130 |
--tasks leaderboard \
|
@@ -132,43 +133,131 @@ lm_eval \
|
|
132 |
--batch_size auto \
|
133 |
--output_path output_dir \
|
134 |
--show_config
|
135 |
-
|
136 |
```
|
137 |
|
138 |
### Accuracy
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
library_name: transformers
|
9 |
---
|
10 |
|
11 |
+
# DeepSeek-R1-Distill-Qwen-14B-FP8-dynamic
|
12 |
|
13 |
## Model Overview
|
14 |
+
- **Model Architecture:** Qwen2ForCausalLM
|
15 |
- **Input:** Text
|
16 |
- **Output:** Text
|
17 |
- **Model Optimizations:**
|
18 |
- **Weight quantization:** FP8
|
19 |
- **Activation quantization:** FP8
|
20 |
+
- **Release Date:** 2/5/2025
|
21 |
- **Version:** 1.0
|
22 |
- **Model Developers:** Neural Magic
|
23 |
|
24 |
Quantized version of [DeepSeek-R1-Distill-Qwen-14B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B).
|
25 |
|
26 |
+
|
27 |
### Model Optimizations
|
28 |
|
29 |
+
This model was obtained by quantizing the weights and activations of [DeepSeek-R1-Distill-Qwen-14B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B) to FP8 data type.
|
30 |
+
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
|
31 |
+
|
32 |
+
Only the weights and activations of the linear operators within transformers blocks are quantized.
|
33 |
+
Weights are quantized using a symmetric per-channel scheme, whereas quantizations are quantized using a symmetric per-token scheme.
|
34 |
+
[LLM Compressor](https://github.com/vllm-project/llm-compressor) is used for quantization.
|
35 |
|
|
|
36 |
|
37 |
+
## Use with vLLM
|
38 |
|
39 |
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
40 |
|
|
|
42 |
from transformers import AutoTokenizer
|
43 |
from vllm import LLM, SamplingParams
|
44 |
|
45 |
+
number_gpus = 1
|
46 |
+
model_name = "neuralmagic/DeepSeek-R1-Distill-Qwen-14B-dynamic"
|
47 |
+
|
48 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
49 |
+
sampling_params = SamplingParams(temperature=0.6, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
|
50 |
+
llm = LLM(model=model_name, tensor_parallel_size=number_gpus, trust_remote_code=True)
|
51 |
|
52 |
messages_list = [
|
53 |
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}],
|
|
|
69 |
|
70 |
|
71 |
```python
|
|
|
72 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
73 |
from llmcompressor.modifiers.quantization import QuantizationModifier
|
74 |
from llmcompressor.transformers import oneshot
|
75 |
import os
|
76 |
|
77 |
+
# Load model
|
78 |
+
model_stub = "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B"
|
79 |
+
model_name = model_stub.split("/")[-1]
|
80 |
+
|
81 |
+
model = AutoModelForCausalLM.from_pretrained(
|
82 |
+
model_stub,
|
83 |
+
torch_dtype="auto",
|
84 |
+
)
|
85 |
+
|
86 |
+
tokenizer = AutoTokenizer.from_pretrained(model_stub)
|
87 |
+
|
88 |
+
# Configure the quantization algorithm and scheme
|
89 |
+
recipe = QuantizationModifier(
|
90 |
+
targets="Linear",
|
91 |
+
scheme="FP8_DYNAMIC",
|
92 |
+
ignore=["lm_head"],
|
93 |
+
)
|
94 |
+
|
95 |
+
# Apply quantization
|
96 |
+
oneshot(
|
97 |
+
model=model,
|
98 |
+
recipe=recipe,
|
99 |
+
)
|
100 |
+
|
101 |
+
# Save to disk in compressed-tensors format
|
102 |
+
save_path = model_name + "-FP8-dynamic
|
103 |
+
model.save_pretrained(save_path)
|
104 |
+
tokenizer.save_pretrained(save_path)
|
105 |
+
print(f"Model and tokenizer saved to: {save_path}")
|
|
|
|
|
|
|
106 |
```
|
107 |
|
108 |
## Evaluation
|
|
|
113 |
```
|
114 |
lm_eval \
|
115 |
--model vllm \
|
116 |
+
--model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Qwen-14B-FP8-dynamic",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \
|
117 |
--tasks openllm \
|
118 |
--write_out \
|
119 |
--batch_size auto \
|
|
|
125 |
```
|
126 |
lm_eval \
|
127 |
--model vllm \
|
128 |
+
--model_args pretrained="neuralmagic/DeepSeek-R1-Distill-Qwen-14B-FP8-dynamic",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \
|
129 |
--apply_chat_template \
|
130 |
--fewshot_as_multiturn \
|
131 |
--tasks leaderboard \
|
|
|
133 |
--batch_size auto \
|
134 |
--output_path output_dir \
|
135 |
--show_config
|
|
|
136 |
```
|
137 |
|
138 |
### Accuracy
|
139 |
|
140 |
+
<table>
|
141 |
+
<thead>
|
142 |
+
<tr>
|
143 |
+
<th>Category</th>
|
144 |
+
<th>Metric</th>
|
145 |
+
<th>deepseek-ai/DeepSeek-R1-Distill-Qwen-14B</th>
|
146 |
+
<th>neuralmagic/DeepSeek-R1-Distill-Qwen-14B-FP8-dynamic</th>
|
147 |
+
<th>Recovery</th>
|
148 |
+
</tr>
|
149 |
+
</thead>
|
150 |
+
<tbody>
|
151 |
+
<tr>
|
152 |
+
<td rowspan="7"><b>OpenLLM V1</b></td>
|
153 |
+
<td>ARC-Challenge (Acc-Norm, 25-shot)</td>
|
154 |
+
<td>58.79</td>
|
155 |
+
<td>58.02</td>
|
156 |
+
<td>98.7%</td>
|
157 |
+
</tr>
|
158 |
+
<tr>
|
159 |
+
<td>GSM8K (Strict-Match, 5-shot)</td>
|
160 |
+
<td>87.04</td>
|
161 |
+
<td>87.41</td>
|
162 |
+
<td>100.4%</td>
|
163 |
+
</tr>
|
164 |
+
<tr>
|
165 |
+
<td>HellaSwag (Acc-Norm, 10-shot)</td>
|
166 |
+
<td>81.51</td>
|
167 |
+
<td>81.46</td>
|
168 |
+
<td>100.0%</td>
|
169 |
+
</tr>
|
170 |
+
<tr>
|
171 |
+
<td>MMLU (Acc, 5-shot)</td>
|
172 |
+
<td>74.46</td>
|
173 |
+
<td>74.63</td>
|
174 |
+
<td>100.2%</td>
|
175 |
+
</tr>
|
176 |
+
<tr>
|
177 |
+
<td>TruthfulQA (MC2, 0-shot)</td>
|
178 |
+
<td>54.77</td>
|
179 |
+
<td>54.36</td>
|
180 |
+
<td>99.3%</td>
|
181 |
+
</tr>
|
182 |
+
<tr>
|
183 |
+
<td>Winogrande (Acc, 5-shot)</td>
|
184 |
+
<td>69.38</td>
|
185 |
+
<td>68.98</td>
|
186 |
+
<td>99.4%</td>
|
187 |
+
</tr>
|
188 |
+
<tr>
|
189 |
+
<td><b>Average Score</b></td>
|
190 |
+
<td><b>70.99</b></td>
|
191 |
+
<td><b>70.81</b></td>
|
192 |
+
<td><b>99.8%</b></td>
|
193 |
+
</tr>
|
194 |
+
<tr>
|
195 |
+
<td rowspan="7"><b>OpenLLM V2</b></td>
|
196 |
+
<td>IFEval (Inst Level Strict Acc, 0-shot)</td>
|
197 |
+
<td>43.05</td>
|
198 |
+
<td>43.69</td>
|
199 |
+
<td>101.5%</td>
|
200 |
+
</tr>
|
201 |
+
<tr>
|
202 |
+
<td>BBH (Acc-Norm, 3-shot)</td>
|
203 |
+
<td>47.16</td>
|
204 |
+
<td>47.92</td>
|
205 |
+
<td>101.6%</td>
|
206 |
+
</tr>
|
207 |
+
<tr>
|
208 |
+
<td>Math-Hard (Exact-Match, 4-shot)</td>
|
209 |
+
<td>0.00</td>
|
210 |
+
<td>0.00</td>
|
211 |
+
<td>---</td>
|
212 |
+
</tr>
|
213 |
+
<tr>
|
214 |
+
<td>GPQA (Acc-Norm, 0-shot)</td>
|
215 |
+
<td>35.07</td>
|
216 |
+
<td>35.05</td>
|
217 |
+
<td>100.0%</td>
|
218 |
+
</tr>
|
219 |
+
<tr>
|
220 |
+
<td>MUSR (Acc-Norm, 0-shot)</td>
|
221 |
+
<td>45.14</td>
|
222 |
+
<td>44.62</td>
|
223 |
+
<td>98.8%</td>
|
224 |
+
</tr>
|
225 |
+
<tr>
|
226 |
+
<td>MMLU-Pro (Acc, 5-shot)</td>
|
227 |
+
<td>34.86</td>
|
228 |
+
<td>35.04</td>
|
229 |
+
<td>100.5%</td>
|
230 |
+
</tr>
|
231 |
+
<tr>
|
232 |
+
<td><b>Average Score</b></td>
|
233 |
+
<td><b>34.21</b></td>
|
234 |
+
<td><b>34.39</b></td>
|
235 |
+
<td><b>100.5%</b></td>
|
236 |
+
</tr>
|
237 |
+
<tr>
|
238 |
+
<td rowspan="4"><b>Coding</b></td>
|
239 |
+
<td>HumanEval (pass@1)</td>
|
240 |
+
<td>78.90</td>
|
241 |
+
<td>77.20</td>
|
242 |
+
<td><b>97.9%</b></td>
|
243 |
+
</tr>
|
244 |
+
<tr>
|
245 |
+
<td>HumanEval (pass@10)</td>
|
246 |
+
<td>89.80</td>
|
247 |
+
<td>90.40</td>
|
248 |
+
<td>100.7%</td>
|
249 |
+
</tr>
|
250 |
+
<tr>
|
251 |
+
<td>HumanEval+ (pass@10)</td>
|
252 |
+
<td>72.60</td>
|
253 |
+
<td>72.40</td>
|
254 |
+
<td>99.7%</td>
|
255 |
+
</tr>
|
256 |
+
<tr>
|
257 |
+
<td>HumanEval+ (pass@10)</td>
|
258 |
+
<td>84.90</td>
|
259 |
+
<td>85.90</td>
|
260 |
+
<td>101.2%</td>
|
261 |
+
</tr>
|
262 |
+
</tbody>
|
263 |
+
</table>
|