nm-research commited on
Commit
a29146a
·
verified ·
1 Parent(s): f9f55ed

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +244 -0
README.md CHANGED
@@ -280,3 +280,247 @@ lm_eval \
280
  </tr>
281
  </tbody>
282
  </table>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280
  </tr>
281
  </tbody>
282
  </table>
283
+
284
+
285
+ ## Inference Performance
286
+
287
+
288
+ This model achieves up to 1.14x speedup in single-stream deployment, depending on hardware and use-case scenario.
289
+ The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm).
290
+
291
+ <details>
292
+ <summary>Benchmarking Command</summary>
293
+
294
+ ```
295
+ guidellm --model neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server
296
+ ```
297
+ </details>
298
+
299
+ ### Single-stream performance (measured with vLLM version 0.7.2)
300
+ <table>
301
+ <thead>
302
+ <tr>
303
+ <th></th>
304
+ <th></th>
305
+ <th></th>
306
+ <th style="text-align: center;" colspan="2" >Instruction Following<br>256 / 128</th>
307
+ <th style="text-align: center;" colspan="2" >Multi-turn Chat<br>512 / 256</th>
308
+ <th style="text-align: center;" colspan="2" >Docstring Generation<br>768 / 128</th>
309
+ <th style="text-align: center;" colspan="2" >RAG<br>1024 / 128</th>
310
+ <th style="text-align: center;" colspan="2" >Code Completion<br>256 / 1024</th>
311
+ <th style="text-align: center;" colspan="2" >Code Fixing<br>1024 / 1024</th>
312
+ <th style="text-align: center;" colspan="2" >Large Summarization<br>4096 / 512</th>
313
+ <th style="text-align: center;" colspan="2" >Large RAG<br>10240 / 1536</th>
314
+ </tr>
315
+ <tr>
316
+ <th>Hardware</th>
317
+ <th>Model</th>
318
+ <th>Average cost reduction</th>
319
+ <th>Latency (s)</th>
320
+ <th>QPD</th>
321
+ <th>Latency (s)</th>
322
+ <th>QPD</th>
323
+ <th>Latency (s)</th>
324
+ <th>QPD</th>
325
+ <th>Latency (s)</th>
326
+ <th>QPD</th>
327
+ <th>Latency (s)</th>
328
+ <th>QPD</th>
329
+ <th>Latency (s)</th>
330
+ <th>QPD</th>
331
+ <th>Latency (s)</th>
332
+ <th>QPD</th>
333
+ <th>Latency (s)</th>
334
+ <th>QPD</th>
335
+ </tr>
336
+ </thead>
337
+ <tbody style="text-align: center" >
338
+ <tr>
339
+ <th rowspan="3" valign="top">A6000x1</th>
340
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B</th>
341
+ <td>---</td>
342
+ <td>0.8</td>
343
+ <td>5667</td>
344
+ <td>1.6</td>
345
+ <td>2776</td>
346
+ <td>0.8</td>
347
+ <td>5515</td>
348
+ <td>0.8</td>
349
+ <td>5466</td>
350
+ <td>6.4</td>
351
+ <td>705</td>
352
+ <td>6.5</td>
353
+ <td>697</td>
354
+ <td>3.5</td>
355
+ <td>1295</td>
356
+ <td>18.3</td>
357
+ <td>246</td>
358
+ </tr>
359
+ <tr>
360
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w8a8</th>
361
+ <td>1.14</td>
362
+ <td>0.7</td>
363
+ <td>6635</td>
364
+ <td>1.3</td>
365
+ <td>3340</td>
366
+ <td>0.7</td>
367
+ <td>6396</td>
368
+ <td>0.7</td>
369
+ <td>6343</td>
370
+ <td>5.3</td>
371
+ <td>845</td>
372
+ <td>5.4</td>
373
+ <td>832</td>
374
+ <td>2.9</td>
375
+ <td>1547</td>
376
+ <td>21.3</td>
377
+ <td>211</td>
378
+ </tr>
379
+ <tr>
380
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16</th>
381
+ <td>1.38</td>
382
+ <td>0.5</td>
383
+ <td>8293</td>
384
+ <td>1.1</td>
385
+ <td>4184</td>
386
+ <td>0.6</td>
387
+ <td>7976</td>
388
+ <td>0.6</td>
389
+ <td>7504</td>
390
+ <td>4.3</td>
391
+ <td>1051</td>
392
+ <td>4.4</td>
393
+ <td>1033</td>
394
+ <td>2.5</td>
395
+ <td>1819</td>
396
+ <td>21.1</td>
397
+ <td>213</td>
398
+ </tr>
399
+ <tr>
400
+ <th rowspan="3" valign="top">A100x1</th>
401
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B</th>
402
+ <td>---</td>
403
+ <td>0.6</td>
404
+ <td>3359</td>
405
+ <td>1.2</td>
406
+ <td>1654</td>
407
+ <td>0.6</td>
408
+ <td>3286</td>
409
+ <td>0.6</td>
410
+ <td>3241</td>
411
+ <td>4.7</td>
412
+ <td>424</td>
413
+ <td>4.9</td>
414
+ <td>411</td>
415
+ <td>2.6</td>
416
+ <td>778</td>
417
+ <td>21.1</td>
418
+ <td>95</td>
419
+ </tr>
420
+ <tr>
421
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w8a8</th>
422
+ <td>1.05</td>
423
+ <td>0.6</td>
424
+ <td>3531</td>
425
+ <td>1.1</td>
426
+ <td>1807</td>
427
+ <td>0.6</td>
428
+ <td>3427</td>
429
+ <td>0.6</td>
430
+ <td>3480</td>
431
+ <td>4.5</td>
432
+ <td>448</td>
433
+ <td>4.5</td>
434
+ <td>447</td>
435
+ <td>2.4</td>
436
+ <td>842</td>
437
+ <td>23.5</td>
438
+ <td>86</td>
439
+ </tr>
440
+ <tr>
441
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16</th>
442
+ <td>1.03</td>
443
+ <td>0.6</td>
444
+ <td>3469</td>
445
+ <td>1.1</td>
446
+ <td>1751</td>
447
+ <td>0.6</td>
448
+ <td>3403</td>
449
+ <td>0.6</td>
450
+ <td>3407</td>
451
+ <td>4.5</td>
452
+ <td>447</td>
453
+ <td>4.6</td>
454
+ <td>435</td>
455
+ <td>2.5</td>
456
+ <td>815</td>
457
+ <td>23.3</td>
458
+ <td>86</td>
459
+ </tr>
460
+ <tr>
461
+ <th rowspan="3" valign="top">H100x1</th>
462
+ <th>deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B</th>
463
+ <td>---</td>
464
+ <td>0.4</td>
465
+ <td>2604</td>
466
+ <td>0.8</td>
467
+ <td>1299</td>
468
+ <td>0.4</td>
469
+ <td>2543</td>
470
+ <td>0.4</td>
471
+ <td>2551</td>
472
+ <td>3.3</td>
473
+ <td>330</td>
474
+ <td>3.4</td>
475
+ <td>326</td>
476
+ <td>1.8</td>
477
+ <td>612</td>
478
+ <td>14.0</td>
479
+ <td>78</td>
480
+ </tr>
481
+ <tr>
482
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-FP8-dynamic</th>
483
+ <td>1.04</td>
484
+ <td>0.4</td>
485
+ <td>2694</td>
486
+ <td>0.8</td>
487
+ <td>1364</td>
488
+ <td>0.4</td>
489
+ <td>2670</td>
490
+ <td>0.4</td>
491
+ <td>2639</td>
492
+ <td>3.2</td>
493
+ <td>347</td>
494
+ <td>3.2</td>
495
+ <td>341</td>
496
+ <td>1.6</td>
497
+ <td>673</td>
498
+ <td>14.1</td>
499
+ <td>78</td>
500
+ </tr>
501
+ <tr>
502
+ <th>neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16</th>
503
+ <td>0.84</td>
504
+ <td>0.5</td>
505
+ <td>2111</td>
506
+ <td>1.0</td>
507
+ <td>1065</td>
508
+ <td>0.5</td>
509
+ <td>2068</td>
510
+ <td>0.5</td>
511
+ <td>2119</td>
512
+ <td>4.1</td>
513
+ <td>270</td>
514
+ <td>4.1</td>
515
+ <td>265</td>
516
+ <td>2.1</td>
517
+ <td>530</td>
518
+ <td>15.1</td>
519
+ <td>73</td>
520
+ </tr>
521
+ </tbody>
522
+ </table>
523
+
524
+ **Use case profiles: prompt tokens / generation tokens
525
+
526
+ **QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).