Update README.md
Browse files
README.md
CHANGED
@@ -280,3 +280,247 @@ lm_eval \
|
|
280 |
</tr>
|
281 |
</tbody>
|
282 |
</table>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
</tr>
|
281 |
</tbody>
|
282 |
</table>
|
283 |
+
|
284 |
+
|
285 |
+
## Inference Performance
|
286 |
+
|
287 |
+
|
288 |
+
This model achieves up to 1.14x speedup in single-stream deployment, depending on hardware and use-case scenario.
|
289 |
+
The following performance benchmarks were conducted with [vLLM](https://docs.vllm.ai/en/latest/) version 0.6.7.2, and [GuideLLM](https://github.com/neuralmagic/guidellm).
|
290 |
+
|
291 |
+
<details>
|
292 |
+
<summary>Benchmarking Command</summary>
|
293 |
+
|
294 |
+
```
|
295 |
+
guidellm --model neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16 --target "http://localhost:8000/v1" --data-type emulated --data "prompt_tokens=<prompt_tokens>,generated_tokens=<generated_tokens>" --max seconds 360 --backend aiohttp_server
|
296 |
+
```
|
297 |
+
</details>
|
298 |
+
|
299 |
+
### Single-stream performance (measured with vLLM version 0.7.2)
|
300 |
+
<table>
|
301 |
+
<thead>
|
302 |
+
<tr>
|
303 |
+
<th></th>
|
304 |
+
<th></th>
|
305 |
+
<th></th>
|
306 |
+
<th style="text-align: center;" colspan="2" >Instruction Following<br>256 / 128</th>
|
307 |
+
<th style="text-align: center;" colspan="2" >Multi-turn Chat<br>512 / 256</th>
|
308 |
+
<th style="text-align: center;" colspan="2" >Docstring Generation<br>768 / 128</th>
|
309 |
+
<th style="text-align: center;" colspan="2" >RAG<br>1024 / 128</th>
|
310 |
+
<th style="text-align: center;" colspan="2" >Code Completion<br>256 / 1024</th>
|
311 |
+
<th style="text-align: center;" colspan="2" >Code Fixing<br>1024 / 1024</th>
|
312 |
+
<th style="text-align: center;" colspan="2" >Large Summarization<br>4096 / 512</th>
|
313 |
+
<th style="text-align: center;" colspan="2" >Large RAG<br>10240 / 1536</th>
|
314 |
+
</tr>
|
315 |
+
<tr>
|
316 |
+
<th>Hardware</th>
|
317 |
+
<th>Model</th>
|
318 |
+
<th>Average cost reduction</th>
|
319 |
+
<th>Latency (s)</th>
|
320 |
+
<th>QPD</th>
|
321 |
+
<th>Latency (s)</th>
|
322 |
+
<th>QPD</th>
|
323 |
+
<th>Latency (s)</th>
|
324 |
+
<th>QPD</th>
|
325 |
+
<th>Latency (s)</th>
|
326 |
+
<th>QPD</th>
|
327 |
+
<th>Latency (s)</th>
|
328 |
+
<th>QPD</th>
|
329 |
+
<th>Latency (s)</th>
|
330 |
+
<th>QPD</th>
|
331 |
+
<th>Latency (s)</th>
|
332 |
+
<th>QPD</th>
|
333 |
+
<th>Latency (s)</th>
|
334 |
+
<th>QPD</th>
|
335 |
+
</tr>
|
336 |
+
</thead>
|
337 |
+
<tbody style="text-align: center" >
|
338 |
+
<tr>
|
339 |
+
<th rowspan="3" valign="top">A6000x1</th>
|
340 |
+
<th>deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B</th>
|
341 |
+
<td>---</td>
|
342 |
+
<td>0.8</td>
|
343 |
+
<td>5667</td>
|
344 |
+
<td>1.6</td>
|
345 |
+
<td>2776</td>
|
346 |
+
<td>0.8</td>
|
347 |
+
<td>5515</td>
|
348 |
+
<td>0.8</td>
|
349 |
+
<td>5466</td>
|
350 |
+
<td>6.4</td>
|
351 |
+
<td>705</td>
|
352 |
+
<td>6.5</td>
|
353 |
+
<td>697</td>
|
354 |
+
<td>3.5</td>
|
355 |
+
<td>1295</td>
|
356 |
+
<td>18.3</td>
|
357 |
+
<td>246</td>
|
358 |
+
</tr>
|
359 |
+
<tr>
|
360 |
+
<th>neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w8a8</th>
|
361 |
+
<td>1.14</td>
|
362 |
+
<td>0.7</td>
|
363 |
+
<td>6635</td>
|
364 |
+
<td>1.3</td>
|
365 |
+
<td>3340</td>
|
366 |
+
<td>0.7</td>
|
367 |
+
<td>6396</td>
|
368 |
+
<td>0.7</td>
|
369 |
+
<td>6343</td>
|
370 |
+
<td>5.3</td>
|
371 |
+
<td>845</td>
|
372 |
+
<td>5.4</td>
|
373 |
+
<td>832</td>
|
374 |
+
<td>2.9</td>
|
375 |
+
<td>1547</td>
|
376 |
+
<td>21.3</td>
|
377 |
+
<td>211</td>
|
378 |
+
</tr>
|
379 |
+
<tr>
|
380 |
+
<th>neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16</th>
|
381 |
+
<td>1.38</td>
|
382 |
+
<td>0.5</td>
|
383 |
+
<td>8293</td>
|
384 |
+
<td>1.1</td>
|
385 |
+
<td>4184</td>
|
386 |
+
<td>0.6</td>
|
387 |
+
<td>7976</td>
|
388 |
+
<td>0.6</td>
|
389 |
+
<td>7504</td>
|
390 |
+
<td>4.3</td>
|
391 |
+
<td>1051</td>
|
392 |
+
<td>4.4</td>
|
393 |
+
<td>1033</td>
|
394 |
+
<td>2.5</td>
|
395 |
+
<td>1819</td>
|
396 |
+
<td>21.1</td>
|
397 |
+
<td>213</td>
|
398 |
+
</tr>
|
399 |
+
<tr>
|
400 |
+
<th rowspan="3" valign="top">A100x1</th>
|
401 |
+
<th>deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B</th>
|
402 |
+
<td>---</td>
|
403 |
+
<td>0.6</td>
|
404 |
+
<td>3359</td>
|
405 |
+
<td>1.2</td>
|
406 |
+
<td>1654</td>
|
407 |
+
<td>0.6</td>
|
408 |
+
<td>3286</td>
|
409 |
+
<td>0.6</td>
|
410 |
+
<td>3241</td>
|
411 |
+
<td>4.7</td>
|
412 |
+
<td>424</td>
|
413 |
+
<td>4.9</td>
|
414 |
+
<td>411</td>
|
415 |
+
<td>2.6</td>
|
416 |
+
<td>778</td>
|
417 |
+
<td>21.1</td>
|
418 |
+
<td>95</td>
|
419 |
+
</tr>
|
420 |
+
<tr>
|
421 |
+
<th>neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w8a8</th>
|
422 |
+
<td>1.05</td>
|
423 |
+
<td>0.6</td>
|
424 |
+
<td>3531</td>
|
425 |
+
<td>1.1</td>
|
426 |
+
<td>1807</td>
|
427 |
+
<td>0.6</td>
|
428 |
+
<td>3427</td>
|
429 |
+
<td>0.6</td>
|
430 |
+
<td>3480</td>
|
431 |
+
<td>4.5</td>
|
432 |
+
<td>448</td>
|
433 |
+
<td>4.5</td>
|
434 |
+
<td>447</td>
|
435 |
+
<td>2.4</td>
|
436 |
+
<td>842</td>
|
437 |
+
<td>23.5</td>
|
438 |
+
<td>86</td>
|
439 |
+
</tr>
|
440 |
+
<tr>
|
441 |
+
<th>neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16</th>
|
442 |
+
<td>1.03</td>
|
443 |
+
<td>0.6</td>
|
444 |
+
<td>3469</td>
|
445 |
+
<td>1.1</td>
|
446 |
+
<td>1751</td>
|
447 |
+
<td>0.6</td>
|
448 |
+
<td>3403</td>
|
449 |
+
<td>0.6</td>
|
450 |
+
<td>3407</td>
|
451 |
+
<td>4.5</td>
|
452 |
+
<td>447</td>
|
453 |
+
<td>4.6</td>
|
454 |
+
<td>435</td>
|
455 |
+
<td>2.5</td>
|
456 |
+
<td>815</td>
|
457 |
+
<td>23.3</td>
|
458 |
+
<td>86</td>
|
459 |
+
</tr>
|
460 |
+
<tr>
|
461 |
+
<th rowspan="3" valign="top">H100x1</th>
|
462 |
+
<th>deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B</th>
|
463 |
+
<td>---</td>
|
464 |
+
<td>0.4</td>
|
465 |
+
<td>2604</td>
|
466 |
+
<td>0.8</td>
|
467 |
+
<td>1299</td>
|
468 |
+
<td>0.4</td>
|
469 |
+
<td>2543</td>
|
470 |
+
<td>0.4</td>
|
471 |
+
<td>2551</td>
|
472 |
+
<td>3.3</td>
|
473 |
+
<td>330</td>
|
474 |
+
<td>3.4</td>
|
475 |
+
<td>326</td>
|
476 |
+
<td>1.8</td>
|
477 |
+
<td>612</td>
|
478 |
+
<td>14.0</td>
|
479 |
+
<td>78</td>
|
480 |
+
</tr>
|
481 |
+
<tr>
|
482 |
+
<th>neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-FP8-dynamic</th>
|
483 |
+
<td>1.04</td>
|
484 |
+
<td>0.4</td>
|
485 |
+
<td>2694</td>
|
486 |
+
<td>0.8</td>
|
487 |
+
<td>1364</td>
|
488 |
+
<td>0.4</td>
|
489 |
+
<td>2670</td>
|
490 |
+
<td>0.4</td>
|
491 |
+
<td>2639</td>
|
492 |
+
<td>3.2</td>
|
493 |
+
<td>347</td>
|
494 |
+
<td>3.2</td>
|
495 |
+
<td>341</td>
|
496 |
+
<td>1.6</td>
|
497 |
+
<td>673</td>
|
498 |
+
<td>14.1</td>
|
499 |
+
<td>78</td>
|
500 |
+
</tr>
|
501 |
+
<tr>
|
502 |
+
<th>neuralmagic/DeepSeek-R1-Distill-Qwen-1.5B-quantized.w4a16</th>
|
503 |
+
<td>0.84</td>
|
504 |
+
<td>0.5</td>
|
505 |
+
<td>2111</td>
|
506 |
+
<td>1.0</td>
|
507 |
+
<td>1065</td>
|
508 |
+
<td>0.5</td>
|
509 |
+
<td>2068</td>
|
510 |
+
<td>0.5</td>
|
511 |
+
<td>2119</td>
|
512 |
+
<td>4.1</td>
|
513 |
+
<td>270</td>
|
514 |
+
<td>4.1</td>
|
515 |
+
<td>265</td>
|
516 |
+
<td>2.1</td>
|
517 |
+
<td>530</td>
|
518 |
+
<td>15.1</td>
|
519 |
+
<td>73</td>
|
520 |
+
</tr>
|
521 |
+
</tbody>
|
522 |
+
</table>
|
523 |
+
|
524 |
+
**Use case profiles: prompt tokens / generation tokens
|
525 |
+
|
526 |
+
**QPD: Queries per dollar, based on on-demand cost at [Lambda Labs](https://lambdalabs.com/service/gpu-cloud) (observed on 2/18/2025).
|