Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- fp8
|
| 4 |
+
- vllm
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
# DeepSeek-Coder-V2-Lite-Instruct-FP8
|
| 8 |
+
|
| 9 |
+
## Model Overview
|
| 10 |
+
- **Model Architecture:** DeepSeek-Coder-V2-Lite-Instruct
|
| 11 |
+
- **Input:** Text
|
| 12 |
+
- **Output:** Text
|
| 13 |
+
- **Model Optimizations:**
|
| 14 |
+
- **Weight quantization:** FP8
|
| 15 |
+
- **Activation quantization:** FP8
|
| 16 |
+
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3-7B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-7B-Instruct), this models is intended for assistant-like chat.
|
| 17 |
+
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
|
| 18 |
+
- **Release Date:** 7/18/2024
|
| 19 |
+
- **Version:** 1.0
|
| 20 |
+
- **Model Developers:** Neural Magic
|
| 21 |
+
|
| 22 |
+
Quantized version of [DeepSeek-Coder-V2-Lite-Instruct](deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct).
|
| 23 |
+
<!-- It achieves an average score of 73.19 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 73.48. -->
|
| 24 |
+
It achieves an average score of 79.60 on the [HumanEval](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark, whereas the unquantized model achieves 79.33.
|
| 25 |
+
|
| 26 |
+
### Model Optimizations
|
| 27 |
+
|
| 28 |
+
This model was obtained by quantizing the weights and activations of [DeepSeek-Coder-V2-Lite-Instruct](deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct) to FP8 data type, ready for inference with vLLM >= 0.5.2.
|
| 29 |
+
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
|
| 30 |
+
|
| 31 |
+
Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a linear scaling per output dimension maps the FP8 representations of the quantized weights and activations.
|
| 32 |
+
[AutoFP8](https://github.com/neuralmagic/AutoFP8) is used for quantization with 512 sequences of UltraChat.
|
| 33 |
+
|
| 34 |
+
## Deployment
|
| 35 |
+
|
| 36 |
+
### Use with vLLM
|
| 37 |
+
|
| 38 |
+
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
|
| 39 |
+
|
| 40 |
+
```python
|
| 41 |
+
from vllm import LLM, SamplingParams
|
| 42 |
+
from transformers import AutoTokenizer
|
| 43 |
+
|
| 44 |
+
model_id = "neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8"
|
| 45 |
+
|
| 46 |
+
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
|
| 47 |
+
|
| 48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 49 |
+
|
| 50 |
+
messages = [
|
| 51 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
| 52 |
+
{"role": "user", "content": "Who are you?"},
|
| 53 |
+
]
|
| 54 |
+
|
| 55 |
+
prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 56 |
+
|
| 57 |
+
llm = LLM(model=model_id, trust_remote_code=True, max_model_len=4096)
|
| 58 |
+
|
| 59 |
+
outputs = llm.generate(prompts, sampling_params)
|
| 60 |
+
|
| 61 |
+
generated_text = outputs[0].outputs[0].text
|
| 62 |
+
print(generated_text)
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
|
| 66 |
+
|
| 67 |
+
## Creation
|
| 68 |
+
|
| 69 |
+
This model was created by applying [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py) with expert gates kept at original precision, as presented in the code snipet below.
|
| 70 |
+
Although AutoFP8 was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoFP8.
|
| 71 |
+
|
| 72 |
+
```python
|
| 73 |
+
from datasets import load_dataset
|
| 74 |
+
from transformers import AutoTokenizer
|
| 75 |
+
|
| 76 |
+
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
|
| 77 |
+
|
| 78 |
+
pretrained_model_dir = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
|
| 79 |
+
quantized_model_dir = "DeepSeek-Coder-V2-Lite-Instruct-FP8"
|
| 80 |
+
|
| 81 |
+
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=4096)
|
| 82 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 83 |
+
|
| 84 |
+
ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512))
|
| 85 |
+
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
|
| 86 |
+
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")
|
| 87 |
+
|
| 88 |
+
quantize_config = BaseQuantizeConfig(
|
| 89 |
+
quant_method="fp8",
|
| 90 |
+
activation_scheme="static"
|
| 91 |
+
ignore_patterns=["re:.*lm_head"],
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
model = AutoFP8ForCausalLM.from_pretrained(
|
| 95 |
+
pretrained_model_dir, quantize_config=quantize_config
|
| 96 |
+
)
|
| 97 |
+
model.quantize(examples)
|
| 98 |
+
model.save_quantized(quantized_model_dir)
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
## Evaluation
|
| 102 |
+
|
| 103 |
+
The model was evaluated on the [HumanEval](https://github.com/openai/human-eval?tab=readme-ov-file) benchmark with the [Neural Magic fork](https://github.com/neuralmagic/evalplus) of the [EvalPlus implementation of HumanEval](https://github.com/evalplus/evalplus) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
|
| 104 |
+
```
|
| 105 |
+
python codegen/generate.py --model neuralmagic/DeepSeek-Coder-V2-Lite-Instruct-FP8 --temperature 0.2 --n_samples 50 --resume --root ~ --dataset humaneval
|
| 106 |
+
python evalplus/sanitize.py ~/humaneval/neuralmagic--DeepSeek-Coder-V2-Lite-Instruct-FP8_vllm_temp_0.2
|
| 107 |
+
evalplus.evaluate --dataset humaneval --samples ~/humaneval/neuralmagic--DeepSeek-Coder-V2-Lite-Instruct-FP8_vllm_temp_0.2-sanitized
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
### Accuracy
|
| 111 |
+
|
| 112 |
+
#### Open LLM Leaderboard evaluation scores
|
| 113 |
+
<table>
|
| 114 |
+
<tr>
|
| 115 |
+
<td><strong>Benchmark</strong>
|
| 116 |
+
</td>
|
| 117 |
+
<td><strong>DeepSeek-Coder-V2-Lite-Instruct</strong>
|
| 118 |
+
</td>
|
| 119 |
+
<td><strong>DeepSeek-Coder-V2-Lite-Instruct-FP8(this model)</strong>
|
| 120 |
+
</td>
|
| 121 |
+
<td><strong>Recovery</strong>
|
| 122 |
+
</td>
|
| 123 |
+
</tr>
|
| 124 |
+
<tr>
|
| 125 |
+
<td>base pass@1
|
| 126 |
+
</td>
|
| 127 |
+
<td>80.8
|
| 128 |
+
</td>
|
| 129 |
+
<td>79.3
|
| 130 |
+
</td>
|
| 131 |
+
<td>98.14%
|
| 132 |
+
</td>
|
| 133 |
+
</tr>
|
| 134 |
+
<tr>
|
| 135 |
+
<td>base pass@10
|
| 136 |
+
</td>
|
| 137 |
+
<td>83.4
|
| 138 |
+
</td>
|
| 139 |
+
<td>84.6
|
| 140 |
+
</td>
|
| 141 |
+
<td>101.4%
|
| 142 |
+
</td>
|
| 143 |
+
</tr>
|
| 144 |
+
<tr>
|
| 145 |
+
<td>base+extra pass@1
|
| 146 |
+
</td>
|
| 147 |
+
<td>75.8
|
| 148 |
+
</td>
|
| 149 |
+
<td>74.9
|
| 150 |
+
</td>
|
| 151 |
+
<td>98.81%
|
| 152 |
+
</td>
|
| 153 |
+
</tr>
|
| 154 |
+
<tr>
|
| 155 |
+
<td>base+extra pass@10
|
| 156 |
+
</td>
|
| 157 |
+
<td>77.3
|
| 158 |
+
</td>
|
| 159 |
+
<td>79.6
|
| 160 |
+
</td>
|
| 161 |
+
<td>102.9%
|
| 162 |
+
</td>
|
| 163 |
+
</tr>
|
| 164 |
+
<tr>
|
| 165 |
+
<td><strong>Average</strong>
|
| 166 |
+
</td>
|
| 167 |
+
<td><strong>79.33</strong>
|
| 168 |
+
</td>
|
| 169 |
+
<td><strong>79.60</strong>
|
| 170 |
+
</td>
|
| 171 |
+
<td><strong>100.3%</strong>
|
| 172 |
+
</td>
|
| 173 |
+
</tr>
|
| 174 |
+
</table>
|