neph1 commited on
Commit
2304283
·
verified ·
1 Parent(s): a888efe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -0
README.md CHANGED
@@ -12,6 +12,18 @@ tags:
12
  - sft
13
  ---
14
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  # Uploaded model
16
 
17
  - **Developed by:** neph1
@@ -21,3 +33,50 @@ tags:
21
  This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
22
 
23
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  - sft
13
  ---
14
 
15
+ # Description
16
+
17
+ Qwen2.5-Coder-7B-Instruct trained on a merged dataset of Unity3d q&a from these two datasets:
18
+ [ibranze/codellama_unity3d_v2](https://huggingface.co/datasets/ibranze/codellama_unity3d_v2) (Full)
19
+ [Hypersniper/unity_api_2022_3](https://huggingface.co/datasets/Hypersniper/unity_api_2022_3) (5%)
20
+
21
+ 15062 rows in total with a 10% validation split
22
+
23
+ Consider this a preview as I develop a dataset of my own that I'm pleased with.
24
+
25
+
26
+
27
  # Uploaded model
28
 
29
  - **Developed by:** neph1
 
33
  This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
34
 
35
  [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
36
+
37
+ # Training details
38
+
39
+ About 1 epoch.
40
+
41
+ Rank: 128
42
+
43
+ Alpha: 256
44
+
45
+ TrainingArguments(
46
+ per_device_train_batch_size =2,
47
+ gradient_accumulation_steps = 64,
48
+ #max_steps=10,
49
+ num_train_epochs=3,
50
+ warmup_steps = 5,
51
+ learning_rate = 1e-4,
52
+ fp16 = not torch.cuda.is_bf16_supported(),
53
+ bf16 = torch.cuda.is_bf16_supported(),
54
+ logging_steps = 10,
55
+ optim = "adamw_8bit",
56
+ weight_decay = 0.01,
57
+ lr_scheduler_type = "linear",
58
+ seed = 3407,
59
+ per_device_eval_batch_size = 2,
60
+ eval_strategy="steps",
61
+ eval_accumulation_steps = 64,
62
+ eval_steps = 10,
63
+ eval_delay = 0,
64
+ save_strategy="steps",
65
+ save_steps=25,
66
+ report_to="none",
67
+ ),
68
+
69
+
70
+ Step Training Loss Validation Loss
71
+ 10 2.097300 1.165832
72
+ 20 1.058100 1.013441
73
+ 30 0.898500 0.969640
74
+ 40 0.866600 0.943687
75
+ 50 0.847300 0.926879
76
+ 60 0.838200 0.903914
77
+ 70 0.797600 0.888580
78
+ 80 0.777700 0.873389
79
+ 90 0.793900 0.859501
80
+ 100 0.725500 0.846339
81
+ 110 0.739400 0.843786
82
+ 120 0.675200 0.833775