import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import accuracy_score from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, BatchNormalization from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau from tensorflow.keras.regularizers import l2 from joblib import dump # 1. Read Data data = pd.read_excel('gender.xlsx') # 2. Preprocess Data data['Gender'] = data['Gender'].map({'M': 1, 'F': 0}) # 3. Convert text data into numerical data using TF-IDF tfidf = TfidfVectorizer(analyzer='char', ngram_range=(1, 3)) X = tfidf.fit_transform(data['Name']).toarray() # Convert names into numerical features y = data['Gender'].values # Labels: 1 for Male, 0 for Female # 4. Split the dataset into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 5. Build the Neural Network Model model = Sequential() model.add(Dense(128, activation='relu', kernel_regularizer=l2(0.01), input_shape=(X_train.shape[1],))) # L2 regularization model.add(BatchNormalization()) # Batch normalization model.add(Dropout(0.5)) # Dropout to prevent overfitting model.add(Dense(64, activation='relu', kernel_regularizer=l2(0.01))) # L2 regularization model.add(BatchNormalization()) # Batch normalization model.add(Dropout(0.5)) # Dropout to prevent overfitting model.add(Dense(1, activation='sigmoid')) # Output layer with sigmoid for binary classification # 6. Compile the model model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # 7. Define callbacks early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True) # Early stopping reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=0.00001) # Learning rate reduction # 8. Train the model with epochs and callbacks model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2, callbacks=[early_stopping, reduce_lr]) # 9. Save the model after training model.save('gender_prediction_model_Improve.h5') # 10. Save the TF-IDF vectorizer dump(tfidf, 'tfidf_vectorizer_Improve.joblib') # 11. Evaluate the model y_pred = (model.predict(X_test) > 0.5).astype("int32") # Convert probabilities to binary output accuracy = accuracy_score(y_test, y_pred) print(f"Model Accuracy: {accuracy * 100:.2f}%")