|
import streamlit as st
|
|
import os
|
|
import pandas as pd
|
|
from tensorflow.keras.models import load_model
|
|
from joblib import load
|
|
|
|
|
|
st.set_page_config(page_title="Gender Prediction", page_icon="π§βπ", layout="centered")
|
|
|
|
|
|
@st.cache_resource
|
|
def load_prediction_model():
|
|
return load_model('gender_prediction_model.h5')
|
|
|
|
|
|
@st.cache_resource
|
|
def load_vectorizer():
|
|
tfidf_vectorizer_file = 'tfidf_vectorizer.joblib'
|
|
if not os.path.exists(tfidf_vectorizer_file):
|
|
st.error(f"β {tfidf_vectorizer_file} not found. Please ensure the file exists in the current directory.")
|
|
st.stop()
|
|
return load(tfidf_vectorizer_file)
|
|
|
|
|
|
def predict_gender(name, model, tfidf):
|
|
vectorized_name = tfidf.transform([name]).toarray()
|
|
gender = model.predict(vectorized_name) > 0.5
|
|
return 'Male' if gender[0][0] == 1 else 'Female'
|
|
|
|
|
|
model = load_prediction_model()
|
|
tfidf = load_vectorizer()
|
|
|
|
|
|
st.title("Gender Prediction from Name")
|
|
st.write("Enter a name to predict the gender using the pre-trained model.")
|
|
|
|
|
|
name = st.text_input("Enter a name:")
|
|
if st.button("Predict"):
|
|
if name:
|
|
predicted_gender = predict_gender(name, model, tfidf)
|
|
st.success(f"The predicted gender for '{name}' is: **{predicted_gender}**")
|
|
else:
|
|
st.warning("Please enter a valid name.")
|
|
|