|
import pandas as pd
|
|
import numpy as np
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
from sklearn.metrics import accuracy_score
|
|
from tensorflow.keras.models import Sequential
|
|
from tensorflow.keras.layers import Dense, Dropout, BatchNormalization
|
|
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
|
|
from tensorflow.keras.regularizers import l2
|
|
from joblib import dump
|
|
|
|
|
|
data = pd.read_excel('gender.xlsx')
|
|
|
|
|
|
data['Gender'] = data['Gender'].map({'M': 1, 'F': 0})
|
|
|
|
|
|
tfidf = TfidfVectorizer(analyzer='char', ngram_range=(1, 3))
|
|
X = tfidf.fit_transform(data['Name']).toarray()
|
|
y = data['Gender'].values
|
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
|
|
|
|
|
|
|
model = Sequential()
|
|
model.add(Dense(128, activation='relu', kernel_regularizer=l2(0.01), input_shape=(X_train.shape[1],)))
|
|
model.add(BatchNormalization())
|
|
model.add(Dropout(0.5))
|
|
model.add(Dense(64, activation='relu', kernel_regularizer=l2(0.01)))
|
|
model.add(BatchNormalization())
|
|
model.add(Dropout(0.5))
|
|
model.add(Dense(1, activation='sigmoid'))
|
|
|
|
|
|
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
|
|
|
|
|
early_stopping = EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True)
|
|
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=3, min_lr=0.00001)
|
|
|
|
|
|
model.fit(X_train, y_train, epochs=50, batch_size=32, validation_split=0.2,
|
|
callbacks=[early_stopping, reduce_lr])
|
|
|
|
|
|
model.save('gender_prediction_model_Improve.h5')
|
|
|
|
|
|
dump(tfidf, 'tfidf_vectorizer_Improve.joblib')
|
|
|
|
|
|
y_pred = (model.predict(X_test) > 0.5).astype("int32")
|
|
accuracy = accuracy_score(y_test, y_pred)
|
|
print(f"Model Accuracy: {accuracy * 100:.2f}%")
|
|
|