Update README.md
Browse files
README.md
CHANGED
|
@@ -12,12 +12,77 @@ tags:
|
|
| 12 |
base_model: unsloth/mistral-7b-instruct-v0.2-bnb-4bit
|
| 13 |
---
|
| 14 |
|
| 15 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
- **Developed by:** ndebuhr
|
| 18 |
- **License:** apache-2.0
|
| 19 |
- **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
| 22 |
|
| 23 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
|
|
|
| 12 |
base_model: unsloth/mistral-7b-instruct-v0.2-bnb-4bit
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# Model Specifications
|
| 16 |
+
|
| 17 |
+
- **Max Sequence Length**: 16384 (with auto support for RoPE Scaling)
|
| 18 |
+
- **Data Type**: Auto detection, with options for Float16 and Bfloat16
|
| 19 |
+
- **Quantization**: 4bit, to reduce memory usage
|
| 20 |
+
|
| 21 |
+
## Training Data
|
| 22 |
+
|
| 23 |
+
Used a private dataset with hundreds of technical tutorials and associated summaries.
|
| 24 |
+
|
| 25 |
+
## Implementation Highlights
|
| 26 |
+
|
| 27 |
+
- **Efficiency**: Emphasis on reducing memory usage and accelerating download speeds through 4bit quantization.
|
| 28 |
+
- **Adaptability**: Auto detection of data types and support for advanced configuration options like RoPE scaling, LoRA, and gradient checkpointing.
|
| 29 |
+
|
| 30 |
+
## Uploaded Model
|
| 31 |
|
| 32 |
- **Developed by:** ndebuhr
|
| 33 |
- **License:** apache-2.0
|
| 34 |
- **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit
|
| 35 |
|
| 36 |
+
# Configuration and Usage
|
| 37 |
+
|
| 38 |
+
```python
|
| 39 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 40 |
+
import torch
|
| 41 |
+
|
| 42 |
+
input_text = ""
|
| 43 |
+
|
| 44 |
+
# Set device based on CUDA availability
|
| 45 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 46 |
+
|
| 47 |
+
# Load the model and tokenizer
|
| 48 |
+
model_name = "ndebuhr/Mistral-7B-Technical-Tutorial-Summarization-QLoRA"
|
| 49 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 50 |
+
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
|
| 51 |
+
|
| 52 |
+
instruction = "Clarify and summarize this tutorial transcript"
|
| 53 |
+
prompt = """{}
|
| 54 |
+
|
| 55 |
+
### Raw Transcript:
|
| 56 |
+
{}
|
| 57 |
+
|
| 58 |
+
### Summary:
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
# Tokenize the input text
|
| 62 |
+
inputs = tokenizer(
|
| 63 |
+
prompt.format(instruction, input_text),
|
| 64 |
+
return_tensors="pt",
|
| 65 |
+
truncation=True,
|
| 66 |
+
max_length=16384
|
| 67 |
+
).to(device)
|
| 68 |
+
|
| 69 |
+
# Generate outputs
|
| 70 |
+
outputs = model.generate(
|
| 71 |
+
**inputs,
|
| 72 |
+
max_length=16384,
|
| 73 |
+
num_return_sequences=1,
|
| 74 |
+
use_cache=True
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# Decode the generated text
|
| 78 |
+
generated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
## Compute Infrastructure
|
| 82 |
+
|
| 83 |
+
* Fine-tuning: used 1xA100 (40GB)
|
| 84 |
+
* Inference: recommend 1xL4 (24GB)
|
| 85 |
+
|
| 86 |
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
| 87 |
|
| 88 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|