File size: 1,925 Bytes
65c0bdd f3d4702 65c0bdd f3d4702 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
license: apache-2.0
tags:
- goemotions
- emotion-detection
- text-classification
- bert
---
# Fine-tuned GoEmotions Model
This repository contains a BERT-based model fine-tuned on the **GoEmotions** dataset to classify text into one of 28 emotions.
## Model Details
- **Base Model**: BERT
- **Dataset**: GoEmotions (Google's dataset with 28 emotions + neutral)
- **Task**: Multi-class emotion detection
- **Fine-tuned by**: nayeemsam
## Supported Emotions
The model predicts the following emotions:
- admiration, amusement, anger, annoyance, approval, caring, confusion, curiosity, desire, disappointment, disapproval, disgust, embarrassment, excitement, fear, gratitude, grief, joy, love, nervousness, optimism, pride, realization, relief, remorse, sadness, surprise, neutral
## How to Use
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Load model and tokenizer
model = AutoModelForSequenceClassification.from_pretrained("nayeems94/text-emotion-classifier")
tokenizer = AutoTokenizer.from_pretrained("nayeems94/text-emotion-classifier")
# Example text
text = "I am feeling so frustrated and angry!"
# Tokenize
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=128)
# Predict
outputs = model(**inputs)
logits = outputs.logits
predicted_class_id = logits.argmax(dim=-1).item()
# Emotion labels
id2label = {
0: 'admiration', 1: 'amusement', 2: 'anger', 3: 'annoyance', 4: 'approval', 5: 'caring',
6: 'confusion', 7: 'curiosity', 8: 'desire', 9: 'disappointment', 10: 'disapproval',
11: 'disgust', 12: 'embarrassment', 13: 'excitement', 14: 'fear', 15: 'gratitude',
16: 'grief', 17: 'joy', 18: 'love', 19: 'nervousness', 20: 'optimism', 21: 'pride',
22: 'realization', 23: 'relief', 24: 'remorse', 25: 'sadness', 26: 'surprise', 27: 'neutral'
}
print(f"Predicted emotion: {id2label[predicted_class_id]}")
|