Update README.md
Browse files
README.md
CHANGED
@@ -2,8 +2,45 @@
|
|
2 |
tags:
|
3 |
- pytorch_model_hub_mixin
|
4 |
- model_hub_mixin
|
|
|
|
|
5 |
---
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
tags:
|
3 |
- pytorch_model_hub_mixin
|
4 |
- model_hub_mixin
|
5 |
+
- image-to-3d
|
6 |
+
library_name: dust3r
|
7 |
---
|
8 |
|
9 |
+
## DUSt3R: Geometric 3D Vision Made Easy
|
10 |
+
|
11 |
+
```bibtex
|
12 |
+
@inproceedings{dust3r_cvpr24,
|
13 |
+
title={DUSt3R: Geometric 3D Vision Made Easy},
|
14 |
+
author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud},
|
15 |
+
booktitle = {CVPR},
|
16 |
+
year = {2024}
|
17 |
+
}
|
18 |
+
```
|
19 |
+
|
20 |
+
# License
|
21 |
+
The code is distributed under the CC BY-NC-SA 4.0 License. See [LICENSE](https://github.com/naver/dust3r/blob/main/LICENSE) for more information.
|
22 |
+
For the checkpoints, make sure to agree to the license of all the public training datasets and base checkpoints we used, in addition to CC-BY-NC-SA 4.0. See [section: Our Hyperparameters](https://github.com/naver/dust3r?tab=readme-ov-file#our-hyperparameters) for details.
|
23 |
+
|
24 |
+
# Model info
|
25 |
+
|
26 |
+
Gihub page: https://github.com/naver/dust3r/
|
27 |
+
Project page: https://dust3r.europe.naverlabs.com/
|
28 |
+
|
29 |
+
| Modelname | Training resolutions | Head | Encoder | Decoder |
|
30 |
+
|-------------|----------------------|------|---------|---------|
|
31 |
+
| DUSt3R_ViTLarge_BaseDecoder_224_linear | 224x224 | Linear | ViT-L | ViT-B |
|
32 |
+
|
33 |
+
# How to use
|
34 |
+
|
35 |
+
First, [install dust3r](https://github.com/naver/dust3r?tab=readme-ov-file#installation). Make sure to install the huggingface-hub[torch]>=0.22 optional dependency.
|
36 |
+
To load the model:
|
37 |
+
|
38 |
+
```python
|
39 |
+
from dust3r.model import AsymmetricCroCo3DStereo
|
40 |
+
import torch
|
41 |
+
|
42 |
+
model = AsymmetricCroCo3DStereo.from_pretrained("naver/DUSt3R_ViTLarge_BaseDecoder_224_linear")
|
43 |
+
|
44 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
45 |
+
model.to(device)
|
46 |
+
```
|