---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Now let us conceive a particular volition, namely, the mode of thinking whereby
the mind affirms, that the three interior angles of a triangle are equal to two
right angles.
- text: If we know beforehand what this state of affairs is, our desire is conscious;
if not, unconscious.
- text: 'The salvation of the soul in plain English: the world revolves around me.'
- text: Masculine myths find their most seductive incarnation in the hetaera; more
than any other woman, she is flesh and consciousness, idol, inspiration, muse;
painters and sculptors want her as their model; she will nourish poets' dreams;
it is in her that the intellectual will explore the treasures of feminine 'intuition';
she is more readily intelligent than the matron, because she is less set in hypocrisy.
- text: " Since 2004, the Mandiant name has represented unparalleled security expertise,\
\ earning the trust of cyber security professionals and company executives across\
\ the world. By joining this unparalleled frontline experience with our industry\
\ leading, nation-state grade threat intelligence and innovative technology, we\
\ have ensured that FireEye knows more about current advanced threats than anyone.\
\ Today the world looks a lot different than it did in 2004. The cyber security\
\ industry has expanded (some might say exploded), but through all this change,\
\ one thing has remained the same: there is no substitute for world-class expertise\
\ and intelligence. With that in mind, we’ve continued to push the boundaries\
\ of innovation by expanding our expertise- and intelligence-backed solutions\
\ to stay ahead of market needs. Each is considered the gold standard in its respective\
\ space. These solutions include Mandiant Consulting, Mandiant Managed Defense,\
\ FireEye Threat Intelligence, FireEye Expertise On Demand, and Verodin Security\
\ Validation. Now, to streamline options and simplify the process of identifying\
\ solutions our customers need to proactively combat cyber threats, we are renaming\
\ our expertise- and intelligence-backed solutions to Mandiant, under the collective\
\ term Mandiant Solutions. The renaming of our solutions does not change pricing,\
\ content, or delivery today. Current subscribers of these services will continue\
\ to receive the same unparalleled frontline expertise they have come to rely\
\ on. As we move forward, the goal of Mandiant Solutions is to deliver synergies\
\ between these solutions to help customers improve security effectiveness by\
\ automating the security operations center and augmenting their security teams\
\ with Mandiant expertise and intelligence, regardless of the SIEM and security\
\ technology they have deployed. Our Mandiant Solutions portfolio will include:\
\ Each of these offerings combines our technologies, intelligence and expertise,\
\ helping organizations meet evolving security challenges. Customers can be confident\
\ that Mandiant Solutions are backed by the industry’s best expertise and informed\
\ by the best threat intelligence available today. For example, following the\
\ acquisition of Verodin last year, we’ve been actively integrating our market-leading\
\ threat intelligence with the industry’s most comprehensive security validation\
\ platform, now known as Mandiant Security Validation. This represents a significant\
\ benefit to our customers who can test and validate their organization’s readiness\
\ against the very latest techniques employed by today’s threat actors. Of course,\
\ our suite of enterprise solutions (FireEye Helix, Endpoint, Network, and Email\
\ Security) also benefits from and enhances this wealth of frontline expertise\
\ through our unique Innovation Cycle. It ensures that our products and services\
\ are able to learn and adapt to new threats faster and better than anyone. As\
\ we look to the future, our vision is to continue to integrate these capabilities\
\ through a seamless, modern platform that accelerates our customers’ ability\
\ to measurably improve the people, processes, and technology they need to protect\
\ their critical assets. Stay tuned for more updates as we rollout our renaming!\t\
\tSince 2004, the Mandiant name has represented unparalleled security expertise,\
\ earning the trust of cyber security professionals and company executives across\
\ the world. By joining this unparalleled frontline experience with our industry\
\ leading, nation-state grade threat intelligence and innovative technology, we\
\ have ensured that FireEye knows more about current advanced threats than anyone.Today\
\ the world looks a lot different than it did in 2004. The cyber security industry\
\ has expanded (some might say exploded), but through all this change, one thing\
\ has remained the same: there is no substitute for world-class expertise and\
\ intelligence.With that in mind, we’ve continued to push the boundaries of innovation\
\ by expanding our expertise- and intelligence-backed solutions to stay ahead\
\ of market needs. Each is considered the gold standard in its respective space.\
\ These solutions include Mandiant Consulting, Mandiant Managed Defense, FireEye\
\ Threat Intelligence, FireEye Expertise On Demand, and Verodin Security Validation.Now,\
\ to streamline options and simplify the process of identifying solutions our\
\ customers need to proactively combat cyber threats, we are renaming our expertise-\
\ and intelligence-backed solutions to Mandiant, under the collective term Mandiant\
\ Solutions.The renaming of our solutions does not change pricing, content, or\
\ delivery today. Current subscribers of these services will continue to receive\
\ the same unparalleled frontline expertise they have come to rely on.As we move\
\ forward, the goal of Mandiant Solutions is to deliver synergies between these\
\ solutions to help customers improve security effectiveness by automating the\
\ security operations center and augmenting their security teams with Mandiant\
\ expertise and intelligence, regardless of the SIEM and security technology they\
\ have deployed. Our Mandiant Solutions portfolio will include:Mandiant ConsultingMandiant\
\ Managed DefenseMandiant Threat IntelligenceMandiant Expertise On DemandMandiant\
\ Security Validation (formerly Verodin)Each of these offerings combines our technologies,\
\ intelligence and expertise, helping organizations meet evolving security challenges.\
\ Customers can be confident that Mandiant Solutions are backed by the industry’s\
\ best expertise and informed by the best threat intelligence available today. For\
\ example, following the acquisition of Verodin last year, we’ve been actively\
\ integrating our market-leading threat intelligence with the industry’s most\
\ comprehensive security validation platform, now known as Mandiant Security Validation.\
\ This represents a significant benefit to our customers who can test and validate\
\ their organization’s readiness against the very latest techniques employed by\
\ today’s threat actors.Of course, our suite of enterprise solutions (FireEye\
\ Helix, Endpoint, Network, and Email Security) also benefits from and enhances\
\ this wealth of frontline expertise through our unique Innovation Cycle. It ensures\
\ that our products and services are able to learn and adapt to new threats faster\
\ and better than anyone. As we look to the future, our vision is to continue\
\ to integrate these capabilities through a seamless, modern platform that accelerates\
\ our customers’ ability to measurably improve the people, processes, and technology\
\ they need to protect their critical assets. Stay tuned for more updates as we\
\ rollout our renaming!"
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: true
base_model: BAAI/bge-base-en-v1.5
---
# SetFit with BAAI/bge-base-en-v1.5
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:-------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| cybersec |
- "cracking this password?. http://postimg.org/image/mi3xit477/\nit's Gargoyle Router Management Utility\ni'm a pre-beginner in cracking, i setted this up in my router, but i don't want to press the reset button, it took me a few weeks to do it, so i don't wanna re-install the firmware, but i forgot the password.....\ni have unlimited times of enter times, it's a 192.168.2.1\nhow can i crack it? i don't think it's encrypted though..."
- 'How can someone prevent a sybil attack when connecting through TOR?.
As I understand it, running sybil BTC nodes through an anonymous network like TOR is much less expensive than in clearnet. This makes it possible that one could be connected to a majority of nodes controlled by the same entity, right?
\n\nIs there any way to limit exposure to this when connection through TOR?
\n\n( I am asking for a friend :P )
\n' - 'Added gigabit qos switch at workstation to work around 10/100 pass though in Cisco IP phone. Widows says the LAN connection is 1Gbps, but there is a cat5, not 5e going to the machine, am I really getting gigabit?. Windows 7.\nLong story short, the network connection to our PCs was running through our Cisco IP phones, which only supported 10/100. Per my IT guy, everything else on our network, the switches etc. can support gigabit, the phone is the choke point. To workaround, I got a 5 port gigabit switch, and put the phone on the high priority qos port. Under the LAN connection in control panel, it went from 100Mbps to 1Gbps.\nThe reason I am skeptical is that the ethernet cable from the switch to the PC is cat5, not 5e. My understanding is it needs to be 5e. Since there are 3 cables (wall to switch, switch to phone, switch to pc) per machine, I would rather not replace every cable on 17 machines.\nSo, if Windows says gigabit, is that all there is to it? Or should I run some type of diagnostic?\nLonger question, we have 20ish IP phones, and a server, sharing modestly sized documents, and some server-centric ERP type software. Do I even need the Gigabit speed? Some users I have switched are noticing some improvement, but we are not transferring huge files across the network regularly, so it may just seem anecdotally faster to them. How can I tell if I really need the extra bandwidth, and what I am using?\n\nI feel like a total idiot here, be gentle...\n\nThanks!'
|
| non-cybersec | - 'Tex-shell in AUCTeX.
Whenever I compile a file in AUCTeX (e.g. C-c
C-c
and then choosing an option) , it creates a buffer tex-shell
where I can see the output of the compilation command. Once the compilation finishes this shell buffer stays open. What is the right way to close it?
\n\nBesides showing me the compilation output, what else can I use it for?
\n' - 'Inserting a Creative Commons Licence into a LaTeX document.
I\'d like to insert a CC license on a manuscript (a book or report). I\'ve seen the page for downloading the CC icons, and also some questions asked in the forum CC logo and Generate CC information.
\n\nHowever, I do not get how to create the actual thing!
\n\nQ: Can you please provide an example of a license info page (MWE)? That would be really helpful!
\n' - "Hey Reddit! We're Tritonal, and we just released our new U&Me album. Ask us anything!!. Yooo! What's up!? It's Dave & Chad of Tritonal, and we've just released our newest album, U&ME, available everywhere now! We're here to answer all of YOUR questions. Let's get this thing started!\n\nASK US ANYTHING! <3\n\nOur new album U&Me - https://enhanced.ffm.to/umealbum\nOur tour dates - http://tritonalmusic.com/shows\n\nProof: https://i.imgur.com/6cxJ9eU.jpg"
|
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("naufalso/setfit-ctc-bge-base-en-v1.5")
# Run inference
preds = model("The salvation of the soul in plain English: the world revolves around me.")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:------|
| Word count | 2 | 309.552 | 20280 |
| Label | Training Sample Count |
|:-------------|:----------------------|
| non-cybersec | 1000 |
| cybersec | 1000 |
### Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:-----:|:-------------:|:---------------:|
| 0.0000 | 1 | 0.2527 | - |
| 0.0008 | 50 | 0.2398 | - |
| 0.0016 | 100 | 0.2476 | - |
| 0.0024 | 150 | 0.2407 | - |
| 0.0032 | 200 | 0.2448 | - |
| 0.0040 | 250 | 0.241 | - |
| 0.0048 | 300 | 0.2381 | - |
| 0.0056 | 350 | 0.2345 | - |
| 0.0064 | 400 | 0.2344 | - |
| 0.0072 | 450 | 0.2284 | - |
| 0.0080 | 500 | 0.2232 | - |
| 0.0088 | 550 | 0.2167 | - |
| 0.0096 | 600 | 0.2082 | - |
| 0.0104 | 650 | 0.193 | - |
| 0.0112 | 700 | 0.163 | - |
| 0.0120 | 750 | 0.138 | - |
| 0.0128 | 800 | 0.1136 | - |
| 0.0136 | 850 | 0.0934 | - |
| 0.0144 | 900 | 0.0743 | - |
| 0.0152 | 950 | 0.0619 | - |
| 0.0160 | 1000 | 0.0455 | - |
| 0.0168 | 1050 | 0.0415 | - |
| 0.0176 | 1100 | 0.027 | - |
| 0.0184 | 1150 | 0.0276 | - |
| 0.0192 | 1200 | 0.0235 | - |
| 0.0200 | 1250 | 0.0183 | - |
| 0.0208 | 1300 | 0.0193 | - |
| 0.0216 | 1350 | 0.0161 | - |
| 0.0224 | 1400 | 0.0143 | - |
| 0.0232 | 1450 | 0.0134 | - |
| 0.0240 | 1500 | 0.0146 | - |
| 0.0248 | 1550 | 0.0152 | - |
| 0.0256 | 1600 | 0.0157 | - |
| 0.0264 | 1650 | 0.0138 | - |
| 0.0272 | 1700 | 0.0101 | - |
| 0.0280 | 1750 | 0.0089 | - |
| 0.0288 | 1800 | 0.0109 | - |
| 0.0296 | 1850 | 0.0122 | - |
| 0.0304 | 1900 | 0.0056 | - |
| 0.0312 | 1950 | 0.0094 | - |
| 0.0320 | 2000 | 0.0105 | - |
| 0.0328 | 2050 | 0.0101 | - |
| 0.0336 | 2100 | 0.0087 | - |
| 0.0344 | 2150 | 0.0089 | - |
| 0.0352 | 2200 | 0.0079 | - |
| 0.0360 | 2250 | 0.0091 | - |
| 0.0368 | 2300 | 0.0063 | - |
| 0.0376 | 2350 | 0.005 | - |
| 0.0384 | 2400 | 0.0083 | - |
| 0.0392 | 2450 | 0.0066 | - |
| 0.0400 | 2500 | 0.007 | - |
| 0.0408 | 2550 | 0.0049 | - |
| 0.0416 | 2600 | 0.0037 | - |
| 0.0424 | 2650 | 0.006 | - |
| 0.0432 | 2700 | 0.0063 | - |
| 0.0440 | 2750 | 0.0047 | - |
| 0.0448 | 2800 | 0.0062 | - |
| 0.0456 | 2850 | 0.0029 | - |
| 0.0464 | 2900 | 0.0038 | - |
| 0.0472 | 2950 | 0.0025 | - |
| 0.0480 | 3000 | 0.0021 | - |
| 0.0488 | 3050 | 0.0017 | - |
| 0.0496 | 3100 | 0.0041 | - |
| 0.0503 | 3150 | 0.0015 | - |
| 0.0511 | 3200 | 0.004 | - |
| 0.0519 | 3250 | 0.0019 | - |
| 0.0527 | 3300 | 0.005 | - |
| 0.0535 | 3350 | 0.0016 | - |
| 0.0543 | 3400 | 0.0037 | - |
| 0.0551 | 3450 | 0.0031 | - |
| 0.0559 | 3500 | 0.0024 | - |
| 0.0567 | 3550 | 0.0019 | - |
| 0.0575 | 3600 | 0.0036 | - |
| 0.0583 | 3650 | 0.0058 | - |
| 0.0591 | 3700 | 0.0024 | - |
| 0.0599 | 3750 | 0.0021 | - |
| 0.0607 | 3800 | 0.0015 | - |
| 0.0615 | 3850 | 0.0015 | - |
| 0.0623 | 3900 | 0.0016 | - |
| 0.0631 | 3950 | 0.0009 | - |
| 0.0639 | 4000 | 0.0014 | - |
| 0.0647 | 4050 | 0.0014 | - |
| 0.0655 | 4100 | 0.0021 | - |
| 0.0663 | 4150 | 0.0008 | - |
| 0.0671 | 4200 | 0.0031 | - |
| 0.0679 | 4250 | 0.0008 | - |
| 0.0687 | 4300 | 0.0025 | - |
| 0.0695 | 4350 | 0.0028 | - |
| 0.0703 | 4400 | 0.0025 | - |
| 0.0711 | 4450 | 0.0007 | - |
| 0.0719 | 4500 | 0.0018 | - |
| 0.0727 | 4550 | 0.0012 | - |
| 0.0735 | 4600 | 0.0012 | - |
| 0.0743 | 4650 | 0.0006 | - |
| 0.0751 | 4700 | 0.0006 | - |
| 0.0759 | 4750 | 0.0031 | - |
| 0.0767 | 4800 | 0.0017 | - |
| 0.0775 | 4850 | 0.0007 | - |
| 0.0783 | 4900 | 0.0011 | - |
| 0.0791 | 4950 | 0.0006 | - |
| 0.0799 | 5000 | 0.0006 | - |
| 0.0807 | 5050 | 0.0005 | - |
| 0.0815 | 5100 | 0.0005 | - |
| 0.0823 | 5150 | 0.0005 | - |
| 0.0831 | 5200 | 0.0005 | - |
| 0.0839 | 5250 | 0.0005 | - |
| 0.0847 | 5300 | 0.0005 | - |
| 0.0855 | 5350 | 0.0005 | - |
| 0.0863 | 5400 | 0.0005 | - |
| 0.0871 | 5450 | 0.0005 | - |
| 0.0879 | 5500 | 0.0004 | - |
| 0.0887 | 5550 | 0.0005 | - |
| 0.0895 | 5600 | 0.0004 | - |
| 0.0903 | 5650 | 0.0004 | - |
| 0.0911 | 5700 | 0.0004 | - |
| 0.0919 | 5750 | 0.0004 | - |
| 0.0927 | 5800 | 0.0004 | - |
| 0.0935 | 5850 | 0.0035 | - |
| 0.0943 | 5900 | 0.0112 | - |
| 0.0951 | 5950 | 0.0054 | - |
| 0.0959 | 6000 | 0.0058 | - |
| 0.0967 | 6050 | 0.0027 | - |
| 0.0975 | 6100 | 0.0051 | - |
| 0.0983 | 6150 | 0.0038 | - |
| 0.0991 | 6200 | 0.0031 | - |
| 0.0999 | 6250 | 0.0038 | - |
| 0.1007 | 6300 | 0.0021 | - |
| 0.1015 | 6350 | 0.0029 | - |
| 0.1023 | 6400 | 0.0018 | - |
| 0.1031 | 6450 | 0.0035 | - |
| 0.1039 | 6500 | 0.0017 | - |
| 0.1047 | 6550 | 0.0026 | - |
| 0.1055 | 6600 | 0.0016 | - |
| 0.1063 | 6650 | 0.0016 | - |
| 0.1071 | 6700 | 0.0004 | - |
| 0.1079 | 6750 | 0.001 | - |
| 0.1087 | 6800 | 0.0028 | - |
| 0.1095 | 6850 | 0.001 | - |
| 0.1103 | 6900 | 0.0003 | - |
| 0.1111 | 6950 | 0.001 | - |
| 0.1119 | 7000 | 0.0016 | - |
| 0.1127 | 7050 | 0.0003 | - |
| 0.1135 | 7100 | 0.0022 | - |
| 0.1143 | 7150 | 0.0022 | - |
| 0.1151 | 7200 | 0.0016 | - |
| 0.1159 | 7250 | 0.0007 | - |
| 0.1167 | 7300 | 0.0003 | - |
| 0.1175 | 7350 | 0.0006 | - |
| 0.1183 | 7400 | 0.0026 | - |
| 0.1191 | 7450 | 0.0004 | - |
| 0.1199 | 7500 | 0.0008 | - |
| 0.1207 | 7550 | 0.0004 | - |
| 0.1215 | 7600 | 0.0003 | - |
| 0.1223 | 7650 | 0.0004 | - |
| 0.1231 | 7700 | 0.0023 | - |
| 0.1239 | 7750 | 0.0004 | - |
| 0.1247 | 7800 | 0.0005 | - |
| 0.1255 | 7850 | 0.0005 | - |
| 0.1263 | 7900 | 0.0016 | - |
| 0.1271 | 7950 | 0.0005 | - |
| 0.1279 | 8000 | 0.0004 | - |
| 0.1287 | 8050 | 0.0003 | - |
| 0.1295 | 8100 | 0.0014 | - |
| 0.1303 | 8150 | 0.0052 | - |
| 0.1311 | 8200 | 0.005 | - |
| 0.1319 | 8250 | 0.0051 | - |
| 0.1327 | 8300 | 0.0009 | - |
| 0.1335 | 8350 | 0.0003 | - |
| 0.1343 | 8400 | 0.0004 | - |
| 0.1351 | 8450 | 0.0003 | - |
| 0.1359 | 8500 | 0.0003 | - |
| 0.1367 | 8550 | 0.0009 | - |
| 0.1375 | 8600 | 0.0003 | - |
| 0.1383 | 8650 | 0.0003 | - |
| 0.1391 | 8700 | 0.0003 | - |
| 0.1399 | 8750 | 0.0009 | - |
| 0.1407 | 8800 | 0.0012 | - |
| 0.1415 | 8850 | 0.0009 | - |
| 0.1423 | 8900 | 0.0003 | - |
| 0.1431 | 8950 | 0.0002 | - |
| 0.1439 | 9000 | 0.0002 | - |
| 0.1447 | 9050 | 0.0002 | - |
| 0.1455 | 9100 | 0.0002 | - |
| 0.1463 | 9150 | 0.0002 | - |
| 0.1471 | 9200 | 0.0002 | - |
| 0.1479 | 9250 | 0.0003 | - |
| 0.1487 | 9300 | 0.0002 | - |
| 0.1494 | 9350 | 0.0002 | - |
| 0.1502 | 9400 | 0.0002 | - |
| 0.1510 | 9450 | 0.0002 | - |
| 0.1518 | 9500 | 0.0002 | - |
| 0.1526 | 9550 | 0.0002 | - |
| 0.1534 | 9600 | 0.0002 | - |
| 0.1542 | 9650 | 0.0002 | - |
| 0.1550 | 9700 | 0.0002 | - |
| 0.1558 | 9750 | 0.0002 | - |
| 0.1566 | 9800 | 0.0002 | - |
| 0.1574 | 9850 | 0.0002 | - |
| 0.1582 | 9900 | 0.0002 | - |
| 0.1590 | 9950 | 0.0002 | - |
| 0.1598 | 10000 | 0.0002 | - |
| 0.1606 | 10050 | 0.0002 | - |
| 0.1614 | 10100 | 0.0002 | - |
| 0.1622 | 10150 | 0.0002 | - |
| 0.1630 | 10200 | 0.0002 | - |
| 0.1638 | 10250 | 0.0002 | - |
| 0.1646 | 10300 | 0.0002 | - |
| 0.1654 | 10350 | 0.0002 | - |
| 0.1662 | 10400 | 0.0002 | - |
| 0.1670 | 10450 | 0.0002 | - |
| 0.1678 | 10500 | 0.0002 | - |
| 0.1686 | 10550 | 0.0002 | - |
| 0.1694 | 10600 | 0.0002 | - |
| 0.1702 | 10650 | 0.0002 | - |
| 0.1710 | 10700 | 0.0002 | - |
| 0.1718 | 10750 | 0.0002 | - |
| 0.1726 | 10800 | 0.0002 | - |
| 0.1734 | 10850 | 0.0002 | - |
| 0.1742 | 10900 | 0.0002 | - |
| 0.1750 | 10950 | 0.0002 | - |
| 0.1758 | 11000 | 0.0002 | - |
| 0.1766 | 11050 | 0.0002 | - |
| 0.1774 | 11100 | 0.0002 | - |
| 0.1782 | 11150 | 0.0002 | - |
| 0.1790 | 11200 | 0.0002 | - |
| 0.1798 | 11250 | 0.0002 | - |
| 0.1806 | 11300 | 0.0002 | - |
| 0.1814 | 11350 | 0.0002 | - |
| 0.1822 | 11400 | 0.0002 | - |
| 0.1830 | 11450 | 0.0002 | - |
| 0.1838 | 11500 | 0.0002 | - |
| 0.1846 | 11550 | 0.0002 | - |
| 0.1854 | 11600 | 0.0002 | - |
| 0.1862 | 11650 | 0.0002 | - |
| 0.1870 | 11700 | 0.0002 | - |
| 0.1878 | 11750 | 0.0002 | - |
| 0.1886 | 11800 | 0.0001 | - |
| 0.1894 | 11850 | 0.0002 | - |
| 0.1902 | 11900 | 0.0002 | - |
| 0.1910 | 11950 | 0.0001 | - |
| 0.1918 | 12000 | 0.0001 | - |
| 0.1926 | 12050 | 0.0001 | - |
| 0.1934 | 12100 | 0.0001 | - |
| 0.1942 | 12150 | 0.0001 | - |
| 0.1950 | 12200 | 0.0001 | - |
| 0.1958 | 12250 | 0.0001 | - |
| 0.1966 | 12300 | 0.0001 | - |
| 0.1974 | 12350 | 0.0001 | - |
| 0.1982 | 12400 | 0.0001 | - |
| 0.1990 | 12450 | 0.0001 | - |
| 0.1998 | 12500 | 0.0001 | - |
| 0.2006 | 12550 | 0.0001 | - |
| 0.2014 | 12600 | 0.0001 | - |
| 0.2022 | 12650 | 0.0001 | - |
| 0.2030 | 12700 | 0.0001 | - |
| 0.2038 | 12750 | 0.0001 | - |
| 0.2046 | 12800 | 0.0001 | - |
| 0.2054 | 12850 | 0.0001 | - |
| 0.2062 | 12900 | 0.0001 | - |
| 0.2070 | 12950 | 0.0001 | - |
| 0.2078 | 13000 | 0.0001 | - |
| 0.2086 | 13050 | 0.0001 | - |
| 0.2094 | 13100 | 0.0001 | - |
| 0.2102 | 13150 | 0.0001 | - |
| 0.2110 | 13200 | 0.0001 | - |
| 0.2118 | 13250 | 0.0001 | - |
| 0.2126 | 13300 | 0.0001 | - |
| 0.2134 | 13350 | 0.0001 | - |
| 0.2142 | 13400 | 0.0001 | - |
| 0.2150 | 13450 | 0.0001 | - |
| 0.2158 | 13500 | 0.0001 | - |
| 0.2166 | 13550 | 0.0001 | - |
| 0.2174 | 13600 | 0.0001 | - |
| 0.2182 | 13650 | 0.0001 | - |
| 0.2190 | 13700 | 0.0001 | - |
| 0.2198 | 13750 | 0.0001 | - |
| 0.2206 | 13800 | 0.0001 | - |
| 0.2214 | 13850 | 0.0001 | - |
| 0.2222 | 13900 | 0.0001 | - |
| 0.2230 | 13950 | 0.0001 | - |
| 0.2238 | 14000 | 0.0001 | - |
| 0.2246 | 14050 | 0.0001 | - |
| 0.2254 | 14100 | 0.0001 | - |
| 0.2262 | 14150 | 0.0001 | - |
| 0.2270 | 14200 | 0.0001 | - |
| 0.2278 | 14250 | 0.0001 | - |
| 0.2286 | 14300 | 0.0001 | - |
| 0.2294 | 14350 | 0.0001 | - |
| 0.2302 | 14400 | 0.0001 | - |
| 0.2310 | 14450 | 0.0001 | - |
| 0.2318 | 14500 | 0.0001 | - |
| 0.2326 | 14550 | 0.0001 | - |
| 0.2334 | 14600 | 0.0001 | - |
| 0.2342 | 14650 | 0.0001 | - |
| 0.2350 | 14700 | 0.0001 | - |
| 0.2358 | 14750 | 0.0001 | - |
| 0.2366 | 14800 | 0.0001 | - |
| 0.2374 | 14850 | 0.0001 | - |
| 0.2382 | 14900 | 0.0001 | - |
| 0.2390 | 14950 | 0.0001 | - |
| 0.2398 | 15000 | 0.0001 | - |
| 0.2406 | 15050 | 0.0001 | - |
| 0.2414 | 15100 | 0.0001 | - |
| 0.2422 | 15150 | 0.0001 | - |
| 0.2430 | 15200 | 0.0001 | - |
| 0.2438 | 15250 | 0.0001 | - |
| 0.2446 | 15300 | 0.0001 | - |
| 0.2454 | 15350 | 0.0001 | - |
| 0.2462 | 15400 | 0.0001 | - |
| 0.2470 | 15450 | 0.0001 | - |
| 0.2478 | 15500 | 0.0001 | - |
| 0.2485 | 15550 | 0.0001 | - |
| 0.2493 | 15600 | 0.0001 | - |
| 0.2501 | 15650 | 0.0001 | - |
| 0.2509 | 15700 | 0.0001 | - |
| 0.2517 | 15750 | 0.0001 | - |
| 0.2525 | 15800 | 0.0001 | - |
| 0.2533 | 15850 | 0.0001 | - |
| 0.2541 | 15900 | 0.0001 | - |
| 0.2549 | 15950 | 0.0001 | - |
| 0.2557 | 16000 | 0.0001 | - |
| 0.2565 | 16050 | 0.0001 | - |
| 0.2573 | 16100 | 0.0001 | - |
| 0.2581 | 16150 | 0.0001 | - |
| 0.2589 | 16200 | 0.0001 | - |
| 0.2597 | 16250 | 0.0001 | - |
| 0.2605 | 16300 | 0.0001 | - |
| 0.2613 | 16350 | 0.0001 | - |
| 0.2621 | 16400 | 0.0001 | - |
| 0.2629 | 16450 | 0.0011 | - |
| 0.2637 | 16500 | 0.0011 | - |
| 0.2645 | 16550 | 0.0022 | - |
| 0.2653 | 16600 | 0.0055 | - |
| 0.2661 | 16650 | 0.0012 | - |
| 0.2669 | 16700 | 0.0023 | - |
| 0.2677 | 16750 | 0.0016 | - |
| 0.2685 | 16800 | 0.0001 | - |
| 0.2693 | 16850 | 0.0001 | - |
| 0.2701 | 16900 | 0.0001 | - |
| 0.2709 | 16950 | 0.0001 | - |
| 0.2717 | 17000 | 0.0001 | - |
| 0.2725 | 17050 | 0.0001 | - |
| 0.2733 | 17100 | 0.0001 | - |
| 0.2741 | 17150 | 0.0001 | - |
| 0.2749 | 17200 | 0.0001 | - |
| 0.2757 | 17250 | 0.0001 | - |
| 0.2765 | 17300 | 0.0001 | - |
| 0.2773 | 17350 | 0.0001 | - |
| 0.2781 | 17400 | 0.0001 | - |
| 0.2789 | 17450 | 0.0001 | - |
| 0.2797 | 17500 | 0.0001 | - |
| 0.2805 | 17550 | 0.0001 | - |
| 0.2813 | 17600 | 0.0001 | - |
| 0.2821 | 17650 | 0.0001 | - |
| 0.2829 | 17700 | 0.0001 | - |
| 0.2837 | 17750 | 0.0001 | - |
| 0.2845 | 17800 | 0.0003 | - |
| 0.2853 | 17850 | 0.0001 | - |
| 0.2861 | 17900 | 0.0001 | - |
| 0.2869 | 17950 | 0.0001 | - |
| 0.2877 | 18000 | 0.0001 | - |
| 0.2885 | 18050 | 0.0001 | - |
| 0.2893 | 18100 | 0.0001 | - |
| 0.2901 | 18150 | 0.0001 | - |
| 0.2909 | 18200 | 0.0001 | - |
| 0.2917 | 18250 | 0.0001 | - |
| 0.2925 | 18300 | 0.0001 | - |
| 0.2933 | 18350 | 0.0001 | - |
| 0.2941 | 18400 | 0.0001 | - |
| 0.2949 | 18450 | 0.0001 | - |
| 0.2957 | 18500 | 0.0001 | - |
| 0.2965 | 18550 | 0.0001 | - |
| 0.2973 | 18600 | 0.0001 | - |
| 0.2981 | 18650 | 0.0001 | - |
| 0.2989 | 18700 | 0.0001 | - |
| 0.2997 | 18750 | 0.0001 | - |
| 0.3005 | 18800 | 0.0001 | - |
| 0.3013 | 18850 | 0.0001 | - |
| 0.3021 | 18900 | 0.0001 | - |
| 0.3029 | 18950 | 0.0001 | - |
| 0.3037 | 19000 | 0.0001 | - |
| 0.3045 | 19050 | 0.0001 | - |
| 0.3053 | 19100 | 0.0001 | - |
| 0.3061 | 19150 | 0.0001 | - |
| 0.3069 | 19200 | 0.0001 | - |
| 0.3077 | 19250 | 0.0001 | - |
| 0.3085 | 19300 | 0.0001 | - |
| 0.3093 | 19350 | 0.0001 | - |
| 0.3101 | 19400 | 0.0001 | - |
| 0.3109 | 19450 | 0.0001 | - |
| 0.3117 | 19500 | 0.0001 | - |
| 0.3125 | 19550 | 0.0001 | - |
| 0.3133 | 19600 | 0.0001 | - |
| 0.3141 | 19650 | 0.0001 | - |
| 0.3149 | 19700 | 0.0001 | - |
| 0.3157 | 19750 | 0.0001 | - |
| 0.3165 | 19800 | 0.0 | - |
| 0.3173 | 19850 | 0.0001 | - |
| 0.3181 | 19900 | 0.0001 | - |
| 0.3189 | 19950 | 0.0001 | - |
| 0.3197 | 20000 | 0.0001 | - |
| 0.3205 | 20050 | 0.0001 | - |
| 0.3213 | 20100 | 0.0001 | - |
| 0.3221 | 20150 | 0.0001 | - |
| 0.3229 | 20200 | 0.0 | - |
| 0.3237 | 20250 | 0.0001 | - |
| 0.3245 | 20300 | 0.0 | - |
| 0.3253 | 20350 | 0.0001 | - |
| 0.3261 | 20400 | 0.0 | - |
| 0.3269 | 20450 | 0.0 | - |
| 0.3277 | 20500 | 0.0 | - |
| 0.3285 | 20550 | 0.0001 | - |
| 0.3293 | 20600 | 0.0 | - |
| 0.3301 | 20650 | 0.0 | - |
| 0.3309 | 20700 | 0.0 | - |
| 0.3317 | 20750 | 0.0 | - |
| 0.3325 | 20800 | 0.0 | - |
| 0.3333 | 20850 | 0.0 | - |
| 0.3341 | 20900 | 0.0 | - |
| 0.3349 | 20950 | 0.0 | - |
| 0.3357 | 21000 | 0.0 | - |
| 0.3365 | 21050 | 0.0 | - |
| 0.3373 | 21100 | 0.0 | - |
| 0.3381 | 21150 | 0.0 | - |
| 0.3389 | 21200 | 0.0 | - |
| 0.3397 | 21250 | 0.0 | - |
| 0.3405 | 21300 | 0.0 | - |
| 0.3413 | 21350 | 0.0 | - |
| 0.3421 | 21400 | 0.0 | - |
| 0.3429 | 21450 | 0.0 | - |
| 0.3437 | 21500 | 0.0 | - |
| 0.3445 | 21550 | 0.0 | - |
| 0.3453 | 21600 | 0.0 | - |
| 0.3461 | 21650 | 0.0 | - |
| 0.3469 | 21700 | 0.0 | - |
| 0.3476 | 21750 | 0.0 | - |
| 0.3484 | 21800 | 0.0 | - |
| 0.3492 | 21850 | 0.0 | - |
| 0.3500 | 21900 | 0.0 | - |
| 0.3508 | 21950 | 0.0 | - |
| 0.3516 | 22000 | 0.0 | - |
| 0.3524 | 22050 | 0.0 | - |
| 0.3532 | 22100 | 0.0 | - |
| 0.3540 | 22150 | 0.0 | - |
| 0.3548 | 22200 | 0.0 | - |
| 0.3556 | 22250 | 0.0 | - |
| 0.3564 | 22300 | 0.0 | - |
| 0.3572 | 22350 | 0.0 | - |
| 0.3580 | 22400 | 0.0 | - |
| 0.3588 | 22450 | 0.0 | - |
| 0.3596 | 22500 | 0.0 | - |
| 0.3604 | 22550 | 0.0 | - |
| 0.3612 | 22600 | 0.0 | - |
| 0.3620 | 22650 | 0.0 | - |
| 0.3628 | 22700 | 0.0 | - |
| 0.3636 | 22750 | 0.0 | - |
| 0.3644 | 22800 | 0.0 | - |
| 0.3652 | 22850 | 0.0 | - |
| 0.3660 | 22900 | 0.0 | - |
| 0.3668 | 22950 | 0.0 | - |
| 0.3676 | 23000 | 0.0 | - |
| 0.3684 | 23050 | 0.0 | - |
| 0.3692 | 23100 | 0.0 | - |
| 0.3700 | 23150 | 0.0 | - |
| 0.3708 | 23200 | 0.0 | - |
| 0.3716 | 23250 | 0.0 | - |
| 0.3724 | 23300 | 0.0 | - |
| 0.3732 | 23350 | 0.0 | - |
| 0.3740 | 23400 | 0.0 | - |
| 0.3748 | 23450 | 0.0 | - |
| 0.3756 | 23500 | 0.0 | - |
| 0.3764 | 23550 | 0.0 | - |
| 0.3772 | 23600 | 0.0 | - |
| 0.3780 | 23650 | 0.0 | - |
| 0.3788 | 23700 | 0.0 | - |
| 0.3796 | 23750 | 0.0 | - |
| 0.3804 | 23800 | 0.0 | - |
| 0.3812 | 23850 | 0.0 | - |
| 0.3820 | 23900 | 0.0 | - |
| 0.3828 | 23950 | 0.0 | - |
| 0.3836 | 24000 | 0.0 | - |
| 0.3844 | 24050 | 0.0 | - |
| 0.3852 | 24100 | 0.0 | - |
| 0.3860 | 24150 | 0.0 | - |
| 0.3868 | 24200 | 0.0 | - |
| 0.3876 | 24250 | 0.0 | - |
| 0.3884 | 24300 | 0.0 | - |
| 0.3892 | 24350 | 0.0 | - |
| 0.3900 | 24400 | 0.0 | - |
| 0.3908 | 24450 | 0.0 | - |
| 0.3916 | 24500 | 0.0 | - |
| 0.3924 | 24550 | 0.0 | - |
| 0.3932 | 24600 | 0.0 | - |
| 0.3940 | 24650 | 0.0 | - |
| 0.3948 | 24700 | 0.0 | - |
| 0.3956 | 24750 | 0.0 | - |
| 0.3964 | 24800 | 0.0 | - |
| 0.3972 | 24850 | 0.0 | - |
| 0.3980 | 24900 | 0.0 | - |
| 0.3988 | 24950 | 0.0 | - |
| 0.3996 | 25000 | 0.0 | - |
| 0.4004 | 25050 | 0.0 | - |
| 0.4012 | 25100 | 0.0 | - |
| 0.4020 | 25150 | 0.0 | - |
| 0.4028 | 25200 | 0.0 | - |
| 0.4036 | 25250 | 0.0 | - |
| 0.4044 | 25300 | 0.0 | - |
| 0.4052 | 25350 | 0.0 | - |
| 0.4060 | 25400 | 0.0 | - |
| 0.4068 | 25450 | 0.0 | - |
| 0.4076 | 25500 | 0.0 | - |
| 0.4084 | 25550 | 0.0 | - |
| 0.4092 | 25600 | 0.0 | - |
| 0.4100 | 25650 | 0.0 | - |
| 0.4108 | 25700 | 0.0 | - |
| 0.4116 | 25750 | 0.0 | - |
| 0.4124 | 25800 | 0.0 | - |
| 0.4132 | 25850 | 0.0 | - |
| 0.4140 | 25900 | 0.0 | - |
| 0.4148 | 25950 | 0.0 | - |
| 0.4156 | 26000 | 0.0 | - |
| 0.4164 | 26050 | 0.0 | - |
| 0.4172 | 26100 | 0.0 | - |
| 0.4180 | 26150 | 0.0 | - |
| 0.4188 | 26200 | 0.0 | - |
| 0.4196 | 26250 | 0.0 | - |
| 0.4204 | 26300 | 0.0 | - |
| 0.4212 | 26350 | 0.0 | - |
| 0.4220 | 26400 | 0.0 | - |
| 0.4228 | 26450 | 0.0 | - |
| 0.4236 | 26500 | 0.0 | - |
| 0.4244 | 26550 | 0.0 | - |
| 0.4252 | 26600 | 0.0 | - |
| 0.4260 | 26650 | 0.0 | - |
| 0.4268 | 26700 | 0.0 | - |
| 0.4276 | 26750 | 0.0 | - |
| 0.4284 | 26800 | 0.0 | - |
| 0.4292 | 26850 | 0.0 | - |
| 0.4300 | 26900 | 0.0 | - |
| 0.4308 | 26950 | 0.0 | - |
| 0.4316 | 27000 | 0.0 | - |
| 0.4324 | 27050 | 0.0 | - |
| 0.4332 | 27100 | 0.0 | - |
| 0.4340 | 27150 | 0.0 | - |
| 0.4348 | 27200 | 0.0 | - |
| 0.4356 | 27250 | 0.0 | - |
| 0.4364 | 27300 | 0.0 | - |
| 0.4372 | 27350 | 0.0 | - |
| 0.4380 | 27400 | 0.0 | - |
| 0.4388 | 27450 | 0.0 | - |
| 0.4396 | 27500 | 0.0 | - |
| 0.4404 | 27550 | 0.0 | - |
| 0.4412 | 27600 | 0.0 | - |
| 0.4420 | 27650 | 0.0 | - |
| 0.4428 | 27700 | 0.0 | - |
| 0.4436 | 27750 | 0.0 | - |
| 0.4444 | 27800 | 0.0 | - |
| 0.4452 | 27850 | 0.0 | - |
| 0.4460 | 27900 | 0.0 | - |
| 0.4467 | 27950 | 0.0 | - |
| 0.4475 | 28000 | 0.0 | - |
| 0.4483 | 28050 | 0.0 | - |
| 0.4491 | 28100 | 0.0 | - |
| 0.4499 | 28150 | 0.0 | - |
| 0.4507 | 28200 | 0.0 | - |
| 0.4515 | 28250 | 0.0 | - |
| 0.4523 | 28300 | 0.0 | - |
| 0.4531 | 28350 | 0.0 | - |
| 0.4539 | 28400 | 0.0 | - |
| 0.4547 | 28450 | 0.0 | - |
| 0.4555 | 28500 | 0.0 | - |
| 0.4563 | 28550 | 0.0 | - |
| 0.4571 | 28600 | 0.0 | - |
| 0.4579 | 28650 | 0.0 | - |
| 0.4587 | 28700 | 0.0 | - |
| 0.4595 | 28750 | 0.0 | - |
| 0.4603 | 28800 | 0.0 | - |
| 0.4611 | 28850 | 0.0 | - |
| 0.4619 | 28900 | 0.0 | - |
| 0.4627 | 28950 | 0.0 | - |
| 0.4635 | 29000 | 0.0 | - |
| 0.4643 | 29050 | 0.0 | - |
| 0.4651 | 29100 | 0.0 | - |
| 0.4659 | 29150 | 0.0 | - |
| 0.4667 | 29200 | 0.0 | - |
| 0.4675 | 29250 | 0.0 | - |
| 0.4683 | 29300 | 0.0 | - |
| 0.4691 | 29350 | 0.0003 | - |
| 0.4699 | 29400 | 0.0 | - |
| 0.4707 | 29450 | 0.0005 | - |
| 0.4715 | 29500 | 0.0 | - |
| 0.4723 | 29550 | 0.0 | - |
| 0.4731 | 29600 | 0.0 | - |
| 0.4739 | 29650 | 0.0001 | - |
| 0.4747 | 29700 | 0.0 | - |
| 0.4755 | 29750 | 0.0 | - |
| 0.4763 | 29800 | 0.0 | - |
| 0.4771 | 29850 | 0.0 | - |
| 0.4779 | 29900 | 0.0 | - |
| 0.4787 | 29950 | 0.0 | - |
| 0.4795 | 30000 | 0.0 | - |
| 0.4803 | 30050 | 0.0 | - |
| 0.4811 | 30100 | 0.0 | - |
| 0.4819 | 30150 | 0.0 | - |
| 0.4827 | 30200 | 0.0 | - |
| 0.4835 | 30250 | 0.0 | - |
| 0.4843 | 30300 | 0.0 | - |
| 0.4851 | 30350 | 0.0 | - |
| 0.4859 | 30400 | 0.0 | - |
| 0.4867 | 30450 | 0.0 | - |
| 0.4875 | 30500 | 0.0 | - |
| 0.4883 | 30550 | 0.0 | - |
| 0.4891 | 30600 | 0.0 | - |
| 0.4899 | 30650 | 0.0 | - |
| 0.4907 | 30700 | 0.0 | - |
| 0.4915 | 30750 | 0.0 | - |
| 0.4923 | 30800 | 0.0 | - |
| 0.4931 | 30850 | 0.0 | - |
| 0.4939 | 30900 | 0.0 | - |
| 0.4947 | 30950 | 0.0 | - |
| 0.4955 | 31000 | 0.0 | - |
| 0.4963 | 31050 | 0.0 | - |
| 0.4971 | 31100 | 0.0 | - |
| 0.4979 | 31150 | 0.0 | - |
| 0.4987 | 31200 | 0.0 | - |
| 0.4995 | 31250 | 0.0 | - |
| 0.5003 | 31300 | 0.0 | - |
| 0.5011 | 31350 | 0.0 | - |
| 0.5019 | 31400 | 0.0 | - |
| 0.5027 | 31450 | 0.0 | - |
| 0.5035 | 31500 | 0.0 | - |
| 0.5043 | 31550 | 0.0043 | - |
| 0.5051 | 31600 | 0.0008 | - |
| 0.5059 | 31650 | 0.0 | - |
| 0.5067 | 31700 | 0.0 | - |
| 0.5075 | 31750 | 0.0 | - |
| 0.5083 | 31800 | 0.0 | - |
| 0.5091 | 31850 | 0.0 | - |
| 0.5099 | 31900 | 0.0 | - |
| 0.5107 | 31950 | 0.0 | - |
| 0.5115 | 32000 | 0.0 | - |
| 0.5123 | 32050 | 0.0 | - |
| 0.5131 | 32100 | 0.0 | - |
| 0.5139 | 32150 | 0.0 | - |
| 0.5147 | 32200 | 0.0 | - |
| 0.5155 | 32250 | 0.0 | - |
| 0.5163 | 32300 | 0.0 | - |
| 0.5171 | 32350 | 0.0 | - |
| 0.5179 | 32400 | 0.0 | - |
| 0.5187 | 32450 | 0.0 | - |
| 0.5195 | 32500 | 0.0 | - |
| 0.5203 | 32550 | 0.0 | - |
| 0.5211 | 32600 | 0.0 | - |
| 0.5219 | 32650 | 0.0 | - |
| 0.5227 | 32700 | 0.0 | - |
| 0.5235 | 32750 | 0.0 | - |
| 0.5243 | 32800 | 0.0 | - |
| 0.5251 | 32850 | 0.0 | - |
| 0.5259 | 32900 | 0.0 | - |
| 0.5267 | 32950 | 0.0 | - |
| 0.5275 | 33000 | 0.0 | - |
| 0.5283 | 33050 | 0.0 | - |
| 0.5291 | 33100 | 0.0 | - |
| 0.5299 | 33150 | 0.0 | - |
| 0.5307 | 33200 | 0.0 | - |
| 0.5315 | 33250 | 0.0 | - |
| 0.5323 | 33300 | 0.0 | - |
| 0.5331 | 33350 | 0.0 | - |
| 0.5339 | 33400 | 0.0 | - |
| 0.5347 | 33450 | 0.0 | - |
| 0.5355 | 33500 | 0.0 | - |
| 0.5363 | 33550 | 0.0 | - |
| 0.5371 | 33600 | 0.0 | - |
| 0.5379 | 33650 | 0.0 | - |
| 0.5387 | 33700 | 0.0 | - |
| 0.5395 | 33750 | 0.0 | - |
| 0.5403 | 33800 | 0.0 | - |
| 0.5411 | 33850 | 0.0 | - |
| 0.5419 | 33900 | 0.0 | - |
| 0.5427 | 33950 | 0.0 | - |
| 0.5435 | 34000 | 0.0 | - |
| 0.5443 | 34050 | 0.0 | - |
| 0.5451 | 34100 | 0.0 | - |
| 0.5458 | 34150 | 0.0 | - |
| 0.5466 | 34200 | 0.0 | - |
| 0.5474 | 34250 | 0.0 | - |
| 0.5482 | 34300 | 0.0 | - |
| 0.5490 | 34350 | 0.0 | - |
| 0.5498 | 34400 | 0.0 | - |
| 0.5506 | 34450 | 0.0 | - |
| 0.5514 | 34500 | 0.0 | - |
| 0.5522 | 34550 | 0.0 | - |
| 0.5530 | 34600 | 0.0 | - |
| 0.5538 | 34650 | 0.0 | - |
| 0.5546 | 34700 | 0.0 | - |
| 0.5554 | 34750 | 0.0 | - |
| 0.5562 | 34800 | 0.0 | - |
| 0.5570 | 34850 | 0.0 | - |
| 0.5578 | 34900 | 0.0 | - |
| 0.5586 | 34950 | 0.0 | - |
| 0.5594 | 35000 | 0.0 | - |
| 0.5602 | 35050 | 0.0 | - |
| 0.5610 | 35100 | 0.0 | - |
| 0.5618 | 35150 | 0.0 | - |
| 0.5626 | 35200 | 0.0 | - |
| 0.5634 | 35250 | 0.0 | - |
| 0.5642 | 35300 | 0.0 | - |
| 0.5650 | 35350 | 0.0 | - |
| 0.5658 | 35400 | 0.0 | - |
| 0.5666 | 35450 | 0.0 | - |
| 0.5674 | 35500 | 0.0 | - |
| 0.5682 | 35550 | 0.0 | - |
| 0.5690 | 35600 | 0.0 | - |
| 0.5698 | 35650 | 0.0 | - |
| 0.5706 | 35700 | 0.0 | - |
| 0.5714 | 35750 | 0.0 | - |
| 0.5722 | 35800 | 0.0 | - |
| 0.5730 | 35850 | 0.0 | - |
| 0.5738 | 35900 | 0.0 | - |
| 0.5746 | 35950 | 0.0 | - |
| 0.5754 | 36000 | 0.0 | - |
| 0.5762 | 36050 | 0.0 | - |
| 0.5770 | 36100 | 0.0 | - |
| 0.5778 | 36150 | 0.0 | - |
| 0.5786 | 36200 | 0.0 | - |
| 0.5794 | 36250 | 0.0 | - |
| 0.5802 | 36300 | 0.0 | - |
| 0.5810 | 36350 | 0.0 | - |
| 0.5818 | 36400 | 0.0 | - |
| 0.5826 | 36450 | 0.0 | - |
| 0.5834 | 36500 | 0.0 | - |
| 0.5842 | 36550 | 0.0 | - |
| 0.5850 | 36600 | 0.0 | - |
| 0.5858 | 36650 | 0.0 | - |
| 0.5866 | 36700 | 0.0 | - |
| 0.5874 | 36750 | 0.0 | - |
| 0.5882 | 36800 | 0.0 | - |
| 0.5890 | 36850 | 0.0 | - |
| 0.5898 | 36900 | 0.0 | - |
| 0.5906 | 36950 | 0.0 | - |
| 0.5914 | 37000 | 0.0 | - |
| 0.5922 | 37050 | 0.0 | - |
| 0.5930 | 37100 | 0.0 | - |
| 0.5938 | 37150 | 0.0 | - |
| 0.5946 | 37200 | 0.0 | - |
| 0.5954 | 37250 | 0.0 | - |
| 0.5962 | 37300 | 0.0 | - |
| 0.5970 | 37350 | 0.0 | - |
| 0.5978 | 37400 | 0.0 | - |
| 0.5986 | 37450 | 0.0 | - |
| 0.5994 | 37500 | 0.0 | - |
| 0.6002 | 37550 | 0.0 | - |
| 0.6010 | 37600 | 0.0 | - |
| 0.6018 | 37650 | 0.0 | - |
| 0.6026 | 37700 | 0.0 | - |
| 0.6034 | 37750 | 0.0 | - |
| 0.6042 | 37800 | 0.0 | - |
| 0.6050 | 37850 | 0.0 | - |
| 0.6058 | 37900 | 0.0 | - |
| 0.6066 | 37950 | 0.0 | - |
| 0.6074 | 38000 | 0.0 | - |
| 0.6082 | 38050 | 0.0 | - |
| 0.6090 | 38100 | 0.0 | - |
| 0.6098 | 38150 | 0.0 | - |
| 0.6106 | 38200 | 0.0 | - |
| 0.6114 | 38250 | 0.0 | - |
| 0.6122 | 38300 | 0.0 | - |
| 0.6130 | 38350 | 0.0 | - |
| 0.6138 | 38400 | 0.0 | - |
| 0.6146 | 38450 | 0.0 | - |
| 0.6154 | 38500 | 0.0 | - |
| 0.6162 | 38550 | 0.0 | - |
| 0.6170 | 38600 | 0.0 | - |
| 0.6178 | 38650 | 0.0 | - |
| 0.6186 | 38700 | 0.0 | - |
| 0.6194 | 38750 | 0.0 | - |
| 0.6202 | 38800 | 0.0 | - |
| 0.6210 | 38850 | 0.0 | - |
| 0.6218 | 38900 | 0.0 | - |
| 0.6226 | 38950 | 0.0 | - |
| 0.6234 | 39000 | 0.0 | - |
| 0.6242 | 39050 | 0.0 | - |
| 0.6250 | 39100 | 0.0 | - |
| 0.6258 | 39150 | 0.0 | - |
| 0.6266 | 39200 | 0.0 | - |
| 0.6274 | 39250 | 0.0006 | - |
| 0.6282 | 39300 | 0.0 | - |
| 0.6290 | 39350 | 0.0022 | - |
| 0.6298 | 39400 | 0.0 | - |
| 0.6306 | 39450 | 0.0 | - |
| 0.6314 | 39500 | 0.0 | - |
| 0.6322 | 39550 | 0.0 | - |
| 0.6330 | 39600 | 0.0 | - |
| 0.6338 | 39650 | 0.0 | - |
| 0.6346 | 39700 | 0.0 | - |
| 0.6354 | 39750 | 0.0 | - |
| 0.6362 | 39800 | 0.0 | - |
| 0.6370 | 39850 | 0.0 | - |
| 0.6378 | 39900 | 0.0 | - |
| 0.6386 | 39950 | 0.0 | - |
| 0.6394 | 40000 | 0.0 | - |
| 0.6402 | 40050 | 0.0 | - |
| 0.6410 | 40100 | 0.0 | - |
| 0.6418 | 40150 | 0.0 | - |
| 0.6426 | 40200 | 0.0 | - |
| 0.6434 | 40250 | 0.0 | - |
| 0.6442 | 40300 | 0.0 | - |
| 0.6449 | 40350 | 0.0 | - |
| 0.6457 | 40400 | 0.0 | - |
| 0.6465 | 40450 | 0.0 | - |
| 0.6473 | 40500 | 0.0 | - |
| 0.6481 | 40550 | 0.0 | - |
| 0.6489 | 40600 | 0.0 | - |
| 0.6497 | 40650 | 0.0 | - |
| 0.6505 | 40700 | 0.0 | - |
| 0.6513 | 40750 | 0.0 | - |
| 0.6521 | 40800 | 0.0 | - |
| 0.6529 | 40850 | 0.0 | - |
| 0.6537 | 40900 | 0.0 | - |
| 0.6545 | 40950 | 0.0 | - |
| 0.6553 | 41000 | 0.0 | - |
| 0.6561 | 41050 | 0.0 | - |
| 0.6569 | 41100 | 0.0 | - |
| 0.6577 | 41150 | 0.0 | - |
| 0.6585 | 41200 | 0.0 | - |
| 0.6593 | 41250 | 0.0 | - |
| 0.6601 | 41300 | 0.0 | - |
| 0.6609 | 41350 | 0.0 | - |
| 0.6617 | 41400 | 0.0 | - |
| 0.6625 | 41450 | 0.0 | - |
| 0.6633 | 41500 | 0.0 | - |
| 0.6641 | 41550 | 0.0 | - |
| 0.6649 | 41600 | 0.0 | - |
| 0.6657 | 41650 | 0.0 | - |
| 0.6665 | 41700 | 0.0 | - |
| 0.6673 | 41750 | 0.0 | - |
| 0.6681 | 41800 | 0.0 | - |
| 0.6689 | 41850 | 0.0 | - |
| 0.6697 | 41900 | 0.0 | - |
| 0.6705 | 41950 | 0.0 | - |
| 0.6713 | 42000 | 0.0 | - |
| 0.6721 | 42050 | 0.0 | - |
| 0.6729 | 42100 | 0.0 | - |
| 0.6737 | 42150 | 0.0 | - |
| 0.6745 | 42200 | 0.0 | - |
| 0.6753 | 42250 | 0.0 | - |
| 0.6761 | 42300 | 0.0 | - |
| 0.6769 | 42350 | 0.0 | - |
| 0.6777 | 42400 | 0.0 | - |
| 0.6785 | 42450 | 0.0 | - |
| 0.6793 | 42500 | 0.0 | - |
| 0.6801 | 42550 | 0.0 | - |
| 0.6809 | 42600 | 0.0 | - |
| 0.6817 | 42650 | 0.0 | - |
| 0.6825 | 42700 | 0.0 | - |
| 0.6833 | 42750 | 0.0 | - |
| 0.6841 | 42800 | 0.0 | - |
| 0.6849 | 42850 | 0.0 | - |
| 0.6857 | 42900 | 0.0 | - |
| 0.6865 | 42950 | 0.0 | - |
| 0.6873 | 43000 | 0.0 | - |
| 0.6881 | 43050 | 0.0 | - |
| 0.6889 | 43100 | 0.0 | - |
| 0.6897 | 43150 | 0.0 | - |
| 0.6905 | 43200 | 0.0 | - |
| 0.6913 | 43250 | 0.0 | - |
| 0.6921 | 43300 | 0.0 | - |
| 0.6929 | 43350 | 0.0 | - |
| 0.6937 | 43400 | 0.0 | - |
| 0.6945 | 43450 | 0.0 | - |
| 0.6953 | 43500 | 0.0 | - |
| 0.6961 | 43550 | 0.0 | - |
| 0.6969 | 43600 | 0.0 | - |
| 0.6977 | 43650 | 0.0 | - |
| 0.6985 | 43700 | 0.0 | - |
| 0.6993 | 43750 | 0.0 | - |
| 0.7001 | 43800 | 0.0 | - |
| 0.7009 | 43850 | 0.0 | - |
| 0.7017 | 43900 | 0.0 | - |
| 0.7025 | 43950 | 0.0 | - |
| 0.7033 | 44000 | 0.0 | - |
| 0.7041 | 44050 | 0.0 | - |
| 0.7049 | 44100 | 0.0 | - |
| 0.7057 | 44150 | 0.0 | - |
| 0.7065 | 44200 | 0.0 | - |
| 0.7073 | 44250 | 0.0 | - |
| 0.7081 | 44300 | 0.0 | - |
| 0.7089 | 44350 | 0.0 | - |
| 0.7097 | 44400 | 0.0 | - |
| 0.7105 | 44450 | 0.0 | - |
| 0.7113 | 44500 | 0.0 | - |
| 0.7121 | 44550 | 0.0 | - |
| 0.7129 | 44600 | 0.0 | - |
| 0.7137 | 44650 | 0.0 | - |
| 0.7145 | 44700 | 0.0 | - |
| 0.7153 | 44750 | 0.0 | - |
| 0.7161 | 44800 | 0.0 | - |
| 0.7169 | 44850 | 0.0 | - |
| 0.7177 | 44900 | 0.0 | - |
| 0.7185 | 44950 | 0.0 | - |
| 0.7193 | 45000 | 0.0 | - |
| 0.7201 | 45050 | 0.0 | - |
| 0.7209 | 45100 | 0.0 | - |
| 0.7217 | 45150 | 0.0 | - |
| 0.7225 | 45200 | 0.0 | - |
| 0.7233 | 45250 | 0.0 | - |
| 0.7241 | 45300 | 0.0 | - |
| 0.7249 | 45350 | 0.0 | - |
| 0.7257 | 45400 | 0.0 | - |
| 0.7265 | 45450 | 0.0 | - |
| 0.7273 | 45500 | 0.0 | - |
| 0.7281 | 45550 | 0.0 | - |
| 0.7289 | 45600 | 0.0 | - |
| 0.7297 | 45650 | 0.0001 | - |
| 0.7305 | 45700 | 0.0 | - |
| 0.7313 | 45750 | 0.0 | - |
| 0.7321 | 45800 | 0.0 | - |
| 0.7329 | 45850 | 0.0 | - |
| 0.7337 | 45900 | 0.0 | - |
| 0.7345 | 45950 | 0.0 | - |
| 0.7353 | 46000 | 0.0 | - |
| 0.7361 | 46050 | 0.0 | - |
| 0.7369 | 46100 | 0.0 | - |
| 0.7377 | 46150 | 0.0 | - |
| 0.7385 | 46200 | 0.0 | - |
| 0.7393 | 46250 | 0.0 | - |
| 0.7401 | 46300 | 0.0 | - |
| 0.7409 | 46350 | 0.0 | - |
| 0.7417 | 46400 | 0.0 | - |
| 0.7425 | 46450 | 0.0 | - |
| 0.7433 | 46500 | 0.0 | - |
| 0.7440 | 46550 | 0.0 | - |
| 0.7448 | 46600 | 0.0 | - |
| 0.7456 | 46650 | 0.0 | - |
| 0.7464 | 46700 | 0.0 | - |
| 0.7472 | 46750 | 0.0 | - |
| 0.7480 | 46800 | 0.0 | - |
| 0.7488 | 46850 | 0.0 | - |
| 0.7496 | 46900 | 0.0 | - |
| 0.7504 | 46950 | 0.0 | - |
| 0.7512 | 47000 | 0.0 | - |
| 0.7520 | 47050 | 0.0 | - |
| 0.7528 | 47100 | 0.0 | - |
| 0.7536 | 47150 | 0.0 | - |
| 0.7544 | 47200 | 0.0 | - |
| 0.7552 | 47250 | 0.0 | - |
| 0.7560 | 47300 | 0.0 | - |
| 0.7568 | 47350 | 0.0 | - |
| 0.7576 | 47400 | 0.0 | - |
| 0.7584 | 47450 | 0.0 | - |
| 0.7592 | 47500 | 0.0 | - |
| 0.7600 | 47550 | 0.0 | - |
| 0.7608 | 47600 | 0.0 | - |
| 0.7616 | 47650 | 0.0 | - |
| 0.7624 | 47700 | 0.0 | - |
| 0.7632 | 47750 | 0.0 | - |
| 0.7640 | 47800 | 0.0 | - |
| 0.7648 | 47850 | 0.0 | - |
| 0.7656 | 47900 | 0.0 | - |
| 0.7664 | 47950 | 0.0 | - |
| 0.7672 | 48000 | 0.0 | - |
| 0.7680 | 48050 | 0.0 | - |
| 0.7688 | 48100 | 0.0 | - |
| 0.7696 | 48150 | 0.0 | - |
| 0.7704 | 48200 | 0.0 | - |
| 0.7712 | 48250 | 0.0 | - |
| 0.7720 | 48300 | 0.0 | - |
| 0.7728 | 48350 | 0.0 | - |
| 0.7736 | 48400 | 0.0 | - |
| 0.7744 | 48450 | 0.0 | - |
| 0.7752 | 48500 | 0.0 | - |
| 0.7760 | 48550 | 0.0 | - |
| 0.7768 | 48600 | 0.0 | - |
| 0.7776 | 48650 | 0.0 | - |
| 0.7784 | 48700 | 0.0 | - |
| 0.7792 | 48750 | 0.0 | - |
| 0.7800 | 48800 | 0.0 | - |
| 0.7808 | 48850 | 0.0 | - |
| 0.7816 | 48900 | 0.0 | - |
| 0.7824 | 48950 | 0.0 | - |
| 0.7832 | 49000 | 0.0 | - |
| 0.7840 | 49050 | 0.0 | - |
| 0.7848 | 49100 | 0.0 | - |
| 0.7856 | 49150 | 0.0 | - |
| 0.7864 | 49200 | 0.0 | - |
| 0.7872 | 49250 | 0.0 | - |
| 0.7880 | 49300 | 0.0 | - |
| 0.7888 | 49350 | 0.0 | - |
| 0.7896 | 49400 | 0.0 | - |
| 0.7904 | 49450 | 0.0 | - |
| 0.7912 | 49500 | 0.0 | - |
| 0.7920 | 49550 | 0.0 | - |
| 0.7928 | 49600 | 0.0 | - |
| 0.7936 | 49650 | 0.0 | - |
| 0.7944 | 49700 | 0.0 | - |
| 0.7952 | 49750 | 0.0 | - |
| 0.7960 | 49800 | 0.0 | - |
| 0.7968 | 49850 | 0.0 | - |
| 0.7976 | 49900 | 0.0 | - |
| 0.7984 | 49950 | 0.0 | - |
| 0.7992 | 50000 | 0.0 | - |
| 0.8000 | 50050 | 0.0 | - |
| 0.8008 | 50100 | 0.0 | - |
| 0.8016 | 50150 | 0.0 | - |
| 0.8024 | 50200 | 0.0 | - |
| 0.8032 | 50250 | 0.0 | - |
| 0.8040 | 50300 | 0.0 | - |
| 0.8048 | 50350 | 0.0 | - |
| 0.8056 | 50400 | 0.0 | - |
| 0.8064 | 50450 | 0.0 | - |
| 0.8072 | 50500 | 0.0 | - |
| 0.8080 | 50550 | 0.0 | - |
| 0.8088 | 50600 | 0.0 | - |
| 0.8096 | 50650 | 0.0 | - |
| 0.8104 | 50700 | 0.0 | - |
| 0.8112 | 50750 | 0.0 | - |
| 0.8120 | 50800 | 0.0 | - |
| 0.8128 | 50850 | 0.0 | - |
| 0.8136 | 50900 | 0.0 | - |
| 0.8144 | 50950 | 0.0 | - |
| 0.8152 | 51000 | 0.0 | - |
| 0.8160 | 51050 | 0.0 | - |
| 0.8168 | 51100 | 0.0 | - |
| 0.8176 | 51150 | 0.0 | - |
| 0.8184 | 51200 | 0.0 | - |
| 0.8192 | 51250 | 0.0 | - |
| 0.8200 | 51300 | 0.0 | - |
| 0.8208 | 51350 | 0.0 | - |
| 0.8216 | 51400 | 0.0 | - |
| 0.8224 | 51450 | 0.0 | - |
| 0.8232 | 51500 | 0.0 | - |
| 0.8240 | 51550 | 0.0 | - |
| 0.8248 | 51600 | 0.0 | - |
| 0.8256 | 51650 | 0.0 | - |
| 0.8264 | 51700 | 0.0 | - |
| 0.8272 | 51750 | 0.0 | - |
| 0.8280 | 51800 | 0.0 | - |
| 0.8288 | 51850 | 0.0 | - |
| 0.8296 | 51900 | 0.0 | - |
| 0.8304 | 51950 | 0.0 | - |
| 0.8312 | 52000 | 0.0 | - |
| 0.8320 | 52050 | 0.0 | - |
| 0.8328 | 52100 | 0.0 | - |
| 0.8336 | 52150 | 0.0 | - |
| 0.8344 | 52200 | 0.0 | - |
| 0.8352 | 52250 | 0.0 | - |
| 0.8360 | 52300 | 0.0 | - |
| 0.8368 | 52350 | 0.0 | - |
| 0.8376 | 52400 | 0.0 | - |
| 0.8384 | 52450 | 0.0 | - |
| 0.8392 | 52500 | 0.0 | - |
| 0.8400 | 52550 | 0.0 | - |
| 0.8408 | 52600 | 0.0 | - |
| 0.8416 | 52650 | 0.0 | - |
| 0.8424 | 52700 | 0.0 | - |
| 0.8432 | 52750 | 0.0 | - |
| 0.8439 | 52800 | 0.0 | - |
| 0.8447 | 52850 | 0.0 | - |
| 0.8455 | 52900 | 0.0 | - |
| 0.8463 | 52950 | 0.0 | - |
| 0.8471 | 53000 | 0.0 | - |
| 0.8479 | 53050 | 0.0 | - |
| 0.8487 | 53100 | 0.0 | - |
| 0.8495 | 53150 | 0.0 | - |
| 0.8503 | 53200 | 0.0 | - |
| 0.8511 | 53250 | 0.0 | - |
| 0.8519 | 53300 | 0.0 | - |
| 0.8527 | 53350 | 0.0 | - |
| 0.8535 | 53400 | 0.0 | - |
| 0.8543 | 53450 | 0.0 | - |
| 0.8551 | 53500 | 0.0 | - |
| 0.8559 | 53550 | 0.0 | - |
| 0.8567 | 53600 | 0.0 | - |
| 0.8575 | 53650 | 0.0 | - |
| 0.8583 | 53700 | 0.0 | - |
| 0.8591 | 53750 | 0.0 | - |
| 0.8599 | 53800 | 0.0 | - |
| 0.8607 | 53850 | 0.0 | - |
| 0.8615 | 53900 | 0.0 | - |
| 0.8623 | 53950 | 0.0 | - |
| 0.8631 | 54000 | 0.0 | - |
| 0.8639 | 54050 | 0.0 | - |
| 0.8647 | 54100 | 0.0 | - |
| 0.8655 | 54150 | 0.0 | - |
| 0.8663 | 54200 | 0.0 | - |
| 0.8671 | 54250 | 0.0 | - |
| 0.8679 | 54300 | 0.0 | - |
| 0.8687 | 54350 | 0.0 | - |
| 0.8695 | 54400 | 0.0 | - |
| 0.8703 | 54450 | 0.0 | - |
| 0.8711 | 54500 | 0.0 | - |
| 0.8719 | 54550 | 0.0 | - |
| 0.8727 | 54600 | 0.0 | - |
| 0.8735 | 54650 | 0.0 | - |
| 0.8743 | 54700 | 0.0 | - |
| 0.8751 | 54750 | 0.0 | - |
| 0.8759 | 54800 | 0.0 | - |
| 0.8767 | 54850 | 0.0 | - |
| 0.8775 | 54900 | 0.0 | - |
| 0.8783 | 54950 | 0.0 | - |
| 0.8791 | 55000 | 0.0 | - |
| 0.8799 | 55050 | 0.0 | - |
| 0.8807 | 55100 | 0.0 | - |
| 0.8815 | 55150 | 0.0 | - |
| 0.8823 | 55200 | 0.0 | - |
| 0.8831 | 55250 | 0.0 | - |
| 0.8839 | 55300 | 0.0 | - |
| 0.8847 | 55350 | 0.0 | - |
| 0.8855 | 55400 | 0.0 | - |
| 0.8863 | 55450 | 0.0 | - |
| 0.8871 | 55500 | 0.0 | - |
| 0.8879 | 55550 | 0.0 | - |
| 0.8887 | 55600 | 0.0004 | - |
| 0.8895 | 55650 | 0.0 | - |
| 0.8903 | 55700 | 0.0 | - |
| 0.8911 | 55750 | 0.0 | - |
| 0.8919 | 55800 | 0.0 | - |
| 0.8927 | 55850 | 0.0 | - |
| 0.8935 | 55900 | 0.0 | - |
| 0.8943 | 55950 | 0.0 | - |
| 0.8951 | 56000 | 0.0 | - |
| 0.8959 | 56050 | 0.0 | - |
| 0.8967 | 56100 | 0.0 | - |
| 0.8975 | 56150 | 0.0 | - |
| 0.8983 | 56200 | 0.0 | - |
| 0.8991 | 56250 | 0.0 | - |
| 0.8999 | 56300 | 0.0 | - |
| 0.9007 | 56350 | 0.0 | - |
| 0.9015 | 56400 | 0.0 | - |
| 0.9023 | 56450 | 0.0 | - |
| 0.9031 | 56500 | 0.0 | - |
| 0.9039 | 56550 | 0.0 | - |
| 0.9047 | 56600 | 0.0 | - |
| 0.9055 | 56650 | 0.0 | - |
| 0.9063 | 56700 | 0.0 | - |
| 0.9071 | 56750 | 0.0 | - |
| 0.9079 | 56800 | 0.0 | - |
| 0.9087 | 56850 | 0.0 | - |
| 0.9095 | 56900 | 0.0 | - |
| 0.9103 | 56950 | 0.0 | - |
| 0.9111 | 57000 | 0.0 | - |
| 0.9119 | 57050 | 0.0 | - |
| 0.9127 | 57100 | 0.0 | - |
| 0.9135 | 57150 | 0.0 | - |
| 0.9143 | 57200 | 0.0 | - |
| 0.9151 | 57250 | 0.0 | - |
| 0.9159 | 57300 | 0.0 | - |
| 0.9167 | 57350 | 0.0 | - |
| 0.9175 | 57400 | 0.0 | - |
| 0.9183 | 57450 | 0.0 | - |
| 0.9191 | 57500 | 0.0 | - |
| 0.9199 | 57550 | 0.0 | - |
| 0.9207 | 57600 | 0.0 | - |
| 0.9215 | 57650 | 0.0 | - |
| 0.9223 | 57700 | 0.0 | - |
| 0.9231 | 57750 | 0.0 | - |
| 0.9239 | 57800 | 0.0 | - |
| 0.9247 | 57850 | 0.0 | - |
| 0.9255 | 57900 | 0.0 | - |
| 0.9263 | 57950 | 0.0 | - |
| 0.9271 | 58000 | 0.0 | - |
| 0.9279 | 58050 | 0.0 | - |
| 0.9287 | 58100 | 0.0 | - |
| 0.9295 | 58150 | 0.0 | - |
| 0.9303 | 58200 | 0.0 | - |
| 0.9311 | 58250 | 0.0 | - |
| 0.9319 | 58300 | 0.0 | - |
| 0.9327 | 58350 | 0.0 | - |
| 0.9335 | 58400 | 0.0 | - |
| 0.9343 | 58450 | 0.0 | - |
| 0.9351 | 58500 | 0.0 | - |
| 0.9359 | 58550 | 0.0 | - |
| 0.9367 | 58600 | 0.0 | - |
| 0.9375 | 58650 | 0.0 | - |
| 0.9383 | 58700 | 0.0 | - |
| 0.9391 | 58750 | 0.0 | - |
| 0.9399 | 58800 | 0.0 | - |
| 0.9407 | 58850 | 0.0 | - |
| 0.9415 | 58900 | 0.0 | - |
| 0.9423 | 58950 | 0.0 | - |
| 0.9430 | 59000 | 0.0 | - |
| 0.9438 | 59050 | 0.0 | - |
| 0.9446 | 59100 | 0.0 | - |
| 0.9454 | 59150 | 0.0 | - |
| 0.9462 | 59200 | 0.0 | - |
| 0.9470 | 59250 | 0.0 | - |
| 0.9478 | 59300 | 0.0 | - |
| 0.9486 | 59350 | 0.0 | - |
| 0.9494 | 59400 | 0.0 | - |
| 0.9502 | 59450 | 0.0 | - |
| 0.9510 | 59500 | 0.0 | - |
| 0.9518 | 59550 | 0.0 | - |
| 0.9526 | 59600 | 0.0 | - |
| 0.9534 | 59650 | 0.0 | - |
| 0.9542 | 59700 | 0.0 | - |
| 0.9550 | 59750 | 0.0 | - |
| 0.9558 | 59800 | 0.0 | - |
| 0.9566 | 59850 | 0.0 | - |
| 0.9574 | 59900 | 0.0 | - |
| 0.9582 | 59950 | 0.0 | - |
| 0.9590 | 60000 | 0.0 | - |
| 0.9598 | 60050 | 0.0 | - |
| 0.9606 | 60100 | 0.0 | - |
| 0.9614 | 60150 | 0.0 | - |
| 0.9622 | 60200 | 0.0 | - |
| 0.9630 | 60250 | 0.0 | - |
| 0.9638 | 60300 | 0.0 | - |
| 0.9646 | 60350 | 0.0 | - |
| 0.9654 | 60400 | 0.0 | - |
| 0.9662 | 60450 | 0.0 | - |
| 0.9670 | 60500 | 0.0 | - |
| 0.9678 | 60550 | 0.0 | - |
| 0.9686 | 60600 | 0.0 | - |
| 0.9694 | 60650 | 0.0 | - |
| 0.9702 | 60700 | 0.0 | - |
| 0.9710 | 60750 | 0.0 | - |
| 0.9718 | 60800 | 0.0 | - |
| 0.9726 | 60850 | 0.0 | - |
| 0.9734 | 60900 | 0.0 | - |
| 0.9742 | 60950 | 0.0 | - |
| 0.9750 | 61000 | 0.0 | - |
| 0.9758 | 61050 | 0.0 | - |
| 0.9766 | 61100 | 0.0 | - |
| 0.9774 | 61150 | 0.0 | - |
| 0.9782 | 61200 | 0.0 | - |
| 0.9790 | 61250 | 0.0 | - |
| 0.9798 | 61300 | 0.0 | - |
| 0.9806 | 61350 | 0.0 | - |
| 0.9814 | 61400 | 0.0 | - |
| 0.9822 | 61450 | 0.0 | - |
| 0.9830 | 61500 | 0.0 | - |
| 0.9838 | 61550 | 0.0 | - |
| 0.9846 | 61600 | 0.0 | - |
| 0.9854 | 61650 | 0.0 | - |
| 0.9862 | 61700 | 0.0 | - |
| 0.9870 | 61750 | 0.0 | - |
| 0.9878 | 61800 | 0.0 | - |
| 0.9886 | 61850 | 0.0 | - |
| 0.9894 | 61900 | 0.0 | - |
| 0.9902 | 61950 | 0.0 | - |
| 0.9910 | 62000 | 0.0 | - |
| 0.9918 | 62050 | 0.0 | - |
| 0.9926 | 62100 | 0.0 | - |
| 0.9934 | 62150 | 0.0 | - |
| 0.9942 | 62200 | 0.0 | - |
| 0.9950 | 62250 | 0.0 | - |
| 0.9958 | 62300 | 0.0 | - |
| 0.9966 | 62350 | 0.0 | - |
| 0.9974 | 62400 | 0.0 | - |
| 0.9982 | 62450 | 0.0 | - |
| 0.9990 | 62500 | 0.0 | - |
| 0.9998 | 62550 | 0.0 | - |
| 1.0 | 62563 | - | 0.0913 |
### Framework Versions
- Python: 3.12.7
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu124
- Datasets: 3.1.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```