--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: Now let us conceive a particular volition, namely, the mode of thinking whereby the mind affirms, that the three interior angles of a triangle are equal to two right angles. - text: If we know beforehand what this state of affairs is, our desire is conscious; if not, unconscious. - text: 'The salvation of the soul in plain English: the world revolves around me.' - text: Masculine myths find their most seductive incarnation in the hetaera; more than any other woman, she is flesh and consciousness, idol, inspiration, muse; painters and sculptors want her as their model; she will nourish poets' dreams; it is in her that the intellectual will explore the treasures of feminine 'intuition'; she is more readily intelligent than the matron, because she is less set in hypocrisy. - text: " Since 2004, the Mandiant name has represented unparalleled security expertise,\ \ earning the trust of cyber security professionals and company executives across\ \ the world. By joining this unparalleled frontline experience with our industry\ \ leading, nation-state grade threat intelligence and innovative technology, we\ \ have ensured that FireEye knows more about current advanced threats than anyone.\ \ Today the world looks a lot different than it did in 2004. The cyber security\ \ industry has expanded (some might say exploded), but through all this change,\ \ one thing has remained the same: there is no substitute for world-class expertise\ \ and intelligence. With that in mind, we’ve continued to push the boundaries\ \ of innovation by expanding our expertise- and intelligence-backed solutions\ \ to stay ahead of market needs. Each is considered the gold standard in its respective\ \ space. These solutions include Mandiant Consulting, Mandiant Managed Defense,\ \ FireEye Threat Intelligence, FireEye Expertise On Demand, and Verodin Security\ \ Validation. Now, to streamline options and simplify the process of identifying\ \ solutions our customers need to proactively combat cyber threats, we are renaming\ \ our expertise- and intelligence-backed solutions to Mandiant, under the collective\ \ term Mandiant Solutions. The renaming of our solutions does not change pricing,\ \ content, or delivery today. Current subscribers of these services will continue\ \ to receive the same unparalleled frontline expertise they have come to rely\ \ on. As we move forward, the goal of Mandiant Solutions is to deliver synergies\ \ between these solutions to help customers improve security effectiveness by\ \ automating the security operations center and augmenting their security teams\ \ with Mandiant expertise and intelligence, regardless of the SIEM and security\ \ technology they have deployed.  Our Mandiant Solutions portfolio will include:\ \ Each of these offerings combines our technologies, intelligence and expertise,\ \ helping organizations meet evolving security challenges. Customers can be confident\ \ that Mandiant Solutions are backed by the industry’s best expertise and informed\ \ by the best threat intelligence available today.   For example, following the\ \ acquisition of Verodin last year, we’ve been actively integrating our market-leading\ \ threat intelligence with the industry’s most comprehensive security validation\ \ platform, now known as Mandiant Security Validation. This represents a significant\ \ benefit to our customers who can test and validate their organization’s readiness\ \ against the very latest techniques employed by today’s threat actors. Of course,\ \ our suite of enterprise solutions (FireEye Helix, Endpoint, Network, and Email\ \ Security) also benefits from and enhances this wealth of frontline expertise\ \ through our unique Innovation Cycle. It ensures that our products and services\ \ are able to learn and adapt to new threats faster and better than anyone.  As\ \ we look to the future, our vision is to continue to integrate these capabilities\ \ through a seamless, modern platform that accelerates our customers’ ability\ \ to measurably improve the people, processes, and technology they need to protect\ \ their critical assets.  Stay tuned for more updates as we rollout our renaming!\t\ \tSince 2004, the Mandiant name has represented unparalleled security expertise,\ \ earning the trust of cyber security professionals and company executives across\ \ the world. By joining this unparalleled frontline experience with our industry\ \ leading, nation-state grade threat intelligence and innovative technology, we\ \ have ensured that FireEye knows more about current advanced threats than anyone.Today\ \ the world looks a lot different than it did in 2004. The cyber security industry\ \ has expanded (some might say exploded), but through all this change, one thing\ \ has remained the same: there is no substitute for world-class expertise and\ \ intelligence.With that in mind, we’ve continued to push the boundaries of innovation\ \ by expanding our expertise- and intelligence-backed solutions to stay ahead\ \ of market needs. Each is considered the gold standard in its respective space.\ \ These solutions include Mandiant Consulting, Mandiant Managed Defense, FireEye\ \ Threat Intelligence, FireEye Expertise On Demand, and Verodin Security Validation.Now,\ \ to streamline options and simplify the process of identifying solutions our\ \ customers need to proactively combat cyber threats, we are renaming our expertise-\ \ and intelligence-backed solutions to Mandiant, under the collective term Mandiant\ \ Solutions.The renaming of our solutions does not change pricing, content, or\ \ delivery today. Current subscribers of these services will continue to receive\ \ the same unparalleled frontline expertise they have come to rely on.As we move\ \ forward, the goal of Mandiant Solutions is to deliver synergies between these\ \ solutions to help customers improve security effectiveness by automating the\ \ security operations center and augmenting their security teams with Mandiant\ \ expertise and intelligence, regardless of the SIEM and security technology they\ \ have deployed. Our Mandiant Solutions portfolio will include:Mandiant ConsultingMandiant\ \ Managed DefenseMandiant Threat IntelligenceMandiant Expertise On DemandMandiant\ \ Security Validation (formerly Verodin)Each of these offerings combines our technologies,\ \ intelligence and expertise, helping organizations meet evolving security challenges.\ \ Customers can be confident that Mandiant Solutions are backed by the industry’s\ \ best expertise and informed by the best threat intelligence available today.  For\ \ example, following the acquisition of Verodin last year, we’ve been actively\ \ integrating our market-leading threat intelligence with the industry’s most\ \ comprehensive security validation platform, now known as Mandiant Security Validation.\ \ This represents a significant benefit to our customers who can test and validate\ \ their organization’s readiness against the very latest techniques employed by\ \ today’s threat actors.Of course, our suite of enterprise solutions (FireEye\ \ Helix, Endpoint, Network, and Email Security) also benefits from and enhances\ \ this wealth of frontline expertise through our unique Innovation Cycle. It ensures\ \ that our products and services are able to learn and adapt to new threats faster\ \ and better than anyone. As we look to the future, our vision is to continue\ \ to integrate these capabilities through a seamless, modern platform that accelerates\ \ our customers’ ability to measurably improve the people, processes, and technology\ \ they need to protect their critical assets. Stay tuned for more updates as we\ \ rollout our renaming!" metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: BAAI/bge-base-en-v1.5 --- # SetFit with BAAI/bge-base-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | cybersec | | | non-cybersec | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("naufalso/setfit-ctc-bge-base-en-v1.5") # Run inference preds = model("The salvation of the soul in plain English: the world revolves around me.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:------| | Word count | 2 | 309.552 | 20280 | | Label | Training Sample Count | |:-------------|:----------------------| | non-cybersec | 1000 | | cybersec | 1000 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:-----:|:-------------:|:---------------:| | 0.0000 | 1 | 0.2527 | - | | 0.0008 | 50 | 0.2398 | - | | 0.0016 | 100 | 0.2476 | - | | 0.0024 | 150 | 0.2407 | - | | 0.0032 | 200 | 0.2448 | - | | 0.0040 | 250 | 0.241 | - | | 0.0048 | 300 | 0.2381 | - | | 0.0056 | 350 | 0.2345 | - | | 0.0064 | 400 | 0.2344 | - | | 0.0072 | 450 | 0.2284 | - | | 0.0080 | 500 | 0.2232 | - | | 0.0088 | 550 | 0.2167 | - | | 0.0096 | 600 | 0.2082 | - | | 0.0104 | 650 | 0.193 | - | | 0.0112 | 700 | 0.163 | - | | 0.0120 | 750 | 0.138 | - | | 0.0128 | 800 | 0.1136 | - | | 0.0136 | 850 | 0.0934 | - | | 0.0144 | 900 | 0.0743 | - | | 0.0152 | 950 | 0.0619 | - | | 0.0160 | 1000 | 0.0455 | - | | 0.0168 | 1050 | 0.0415 | - | | 0.0176 | 1100 | 0.027 | - | | 0.0184 | 1150 | 0.0276 | - | | 0.0192 | 1200 | 0.0235 | - | | 0.0200 | 1250 | 0.0183 | - | | 0.0208 | 1300 | 0.0193 | - | | 0.0216 | 1350 | 0.0161 | - | | 0.0224 | 1400 | 0.0143 | - | | 0.0232 | 1450 | 0.0134 | - | | 0.0240 | 1500 | 0.0146 | - | | 0.0248 | 1550 | 0.0152 | - | | 0.0256 | 1600 | 0.0157 | - | | 0.0264 | 1650 | 0.0138 | - | | 0.0272 | 1700 | 0.0101 | - | | 0.0280 | 1750 | 0.0089 | - | | 0.0288 | 1800 | 0.0109 | - | | 0.0296 | 1850 | 0.0122 | - | | 0.0304 | 1900 | 0.0056 | - | | 0.0312 | 1950 | 0.0094 | - | | 0.0320 | 2000 | 0.0105 | - | | 0.0328 | 2050 | 0.0101 | - | | 0.0336 | 2100 | 0.0087 | - | | 0.0344 | 2150 | 0.0089 | - | | 0.0352 | 2200 | 0.0079 | - | | 0.0360 | 2250 | 0.0091 | - | | 0.0368 | 2300 | 0.0063 | - | | 0.0376 | 2350 | 0.005 | - | | 0.0384 | 2400 | 0.0083 | - | | 0.0392 | 2450 | 0.0066 | - | | 0.0400 | 2500 | 0.007 | - | | 0.0408 | 2550 | 0.0049 | - | | 0.0416 | 2600 | 0.0037 | - | | 0.0424 | 2650 | 0.006 | - | | 0.0432 | 2700 | 0.0063 | - | | 0.0440 | 2750 | 0.0047 | - | | 0.0448 | 2800 | 0.0062 | - | | 0.0456 | 2850 | 0.0029 | - | | 0.0464 | 2900 | 0.0038 | - | | 0.0472 | 2950 | 0.0025 | - | | 0.0480 | 3000 | 0.0021 | - | | 0.0488 | 3050 | 0.0017 | - | | 0.0496 | 3100 | 0.0041 | - | | 0.0503 | 3150 | 0.0015 | - | | 0.0511 | 3200 | 0.004 | - | | 0.0519 | 3250 | 0.0019 | - | | 0.0527 | 3300 | 0.005 | - | | 0.0535 | 3350 | 0.0016 | - | | 0.0543 | 3400 | 0.0037 | - | | 0.0551 | 3450 | 0.0031 | - | | 0.0559 | 3500 | 0.0024 | - | | 0.0567 | 3550 | 0.0019 | - | | 0.0575 | 3600 | 0.0036 | - | | 0.0583 | 3650 | 0.0058 | - | | 0.0591 | 3700 | 0.0024 | - | | 0.0599 | 3750 | 0.0021 | - | | 0.0607 | 3800 | 0.0015 | - | | 0.0615 | 3850 | 0.0015 | - | | 0.0623 | 3900 | 0.0016 | - | | 0.0631 | 3950 | 0.0009 | - | | 0.0639 | 4000 | 0.0014 | - | | 0.0647 | 4050 | 0.0014 | - | | 0.0655 | 4100 | 0.0021 | - | | 0.0663 | 4150 | 0.0008 | - | | 0.0671 | 4200 | 0.0031 | - | | 0.0679 | 4250 | 0.0008 | - | | 0.0687 | 4300 | 0.0025 | - | | 0.0695 | 4350 | 0.0028 | - | | 0.0703 | 4400 | 0.0025 | - | | 0.0711 | 4450 | 0.0007 | - | | 0.0719 | 4500 | 0.0018 | - | | 0.0727 | 4550 | 0.0012 | - | | 0.0735 | 4600 | 0.0012 | - | | 0.0743 | 4650 | 0.0006 | - | | 0.0751 | 4700 | 0.0006 | - | | 0.0759 | 4750 | 0.0031 | - | | 0.0767 | 4800 | 0.0017 | - | | 0.0775 | 4850 | 0.0007 | - | | 0.0783 | 4900 | 0.0011 | - | | 0.0791 | 4950 | 0.0006 | - | | 0.0799 | 5000 | 0.0006 | - | | 0.0807 | 5050 | 0.0005 | - | | 0.0815 | 5100 | 0.0005 | - | | 0.0823 | 5150 | 0.0005 | - | | 0.0831 | 5200 | 0.0005 | - | | 0.0839 | 5250 | 0.0005 | - | | 0.0847 | 5300 | 0.0005 | - | | 0.0855 | 5350 | 0.0005 | - | | 0.0863 | 5400 | 0.0005 | - | | 0.0871 | 5450 | 0.0005 | - | | 0.0879 | 5500 | 0.0004 | - | | 0.0887 | 5550 | 0.0005 | - | | 0.0895 | 5600 | 0.0004 | - | | 0.0903 | 5650 | 0.0004 | - | | 0.0911 | 5700 | 0.0004 | - | | 0.0919 | 5750 | 0.0004 | - | | 0.0927 | 5800 | 0.0004 | - | | 0.0935 | 5850 | 0.0035 | - | | 0.0943 | 5900 | 0.0112 | - | | 0.0951 | 5950 | 0.0054 | - | | 0.0959 | 6000 | 0.0058 | - | | 0.0967 | 6050 | 0.0027 | - | | 0.0975 | 6100 | 0.0051 | - | | 0.0983 | 6150 | 0.0038 | - | | 0.0991 | 6200 | 0.0031 | - | | 0.0999 | 6250 | 0.0038 | - | | 0.1007 | 6300 | 0.0021 | - | | 0.1015 | 6350 | 0.0029 | - | | 0.1023 | 6400 | 0.0018 | - | | 0.1031 | 6450 | 0.0035 | - | | 0.1039 | 6500 | 0.0017 | - | | 0.1047 | 6550 | 0.0026 | - | | 0.1055 | 6600 | 0.0016 | - | | 0.1063 | 6650 | 0.0016 | - | | 0.1071 | 6700 | 0.0004 | - | | 0.1079 | 6750 | 0.001 | - | | 0.1087 | 6800 | 0.0028 | - | | 0.1095 | 6850 | 0.001 | - | | 0.1103 | 6900 | 0.0003 | - | | 0.1111 | 6950 | 0.001 | - | | 0.1119 | 7000 | 0.0016 | - | | 0.1127 | 7050 | 0.0003 | - | | 0.1135 | 7100 | 0.0022 | - | | 0.1143 | 7150 | 0.0022 | - | | 0.1151 | 7200 | 0.0016 | - | | 0.1159 | 7250 | 0.0007 | - | | 0.1167 | 7300 | 0.0003 | - | | 0.1175 | 7350 | 0.0006 | - | | 0.1183 | 7400 | 0.0026 | - | | 0.1191 | 7450 | 0.0004 | - | | 0.1199 | 7500 | 0.0008 | - | | 0.1207 | 7550 | 0.0004 | - | | 0.1215 | 7600 | 0.0003 | - | | 0.1223 | 7650 | 0.0004 | - | | 0.1231 | 7700 | 0.0023 | - | | 0.1239 | 7750 | 0.0004 | - | | 0.1247 | 7800 | 0.0005 | - | | 0.1255 | 7850 | 0.0005 | - | | 0.1263 | 7900 | 0.0016 | - | | 0.1271 | 7950 | 0.0005 | - | | 0.1279 | 8000 | 0.0004 | - | | 0.1287 | 8050 | 0.0003 | - | | 0.1295 | 8100 | 0.0014 | - | | 0.1303 | 8150 | 0.0052 | - | | 0.1311 | 8200 | 0.005 | - | | 0.1319 | 8250 | 0.0051 | - | | 0.1327 | 8300 | 0.0009 | - | | 0.1335 | 8350 | 0.0003 | - | | 0.1343 | 8400 | 0.0004 | - | | 0.1351 | 8450 | 0.0003 | - | | 0.1359 | 8500 | 0.0003 | - | | 0.1367 | 8550 | 0.0009 | - | | 0.1375 | 8600 | 0.0003 | - | | 0.1383 | 8650 | 0.0003 | - | | 0.1391 | 8700 | 0.0003 | - | | 0.1399 | 8750 | 0.0009 | - | | 0.1407 | 8800 | 0.0012 | - | | 0.1415 | 8850 | 0.0009 | - | | 0.1423 | 8900 | 0.0003 | - | | 0.1431 | 8950 | 0.0002 | - | | 0.1439 | 9000 | 0.0002 | - | | 0.1447 | 9050 | 0.0002 | - | | 0.1455 | 9100 | 0.0002 | - | | 0.1463 | 9150 | 0.0002 | - | | 0.1471 | 9200 | 0.0002 | - | | 0.1479 | 9250 | 0.0003 | - | | 0.1487 | 9300 | 0.0002 | - | | 0.1494 | 9350 | 0.0002 | - | | 0.1502 | 9400 | 0.0002 | - | | 0.1510 | 9450 | 0.0002 | - | | 0.1518 | 9500 | 0.0002 | - | | 0.1526 | 9550 | 0.0002 | - | | 0.1534 | 9600 | 0.0002 | - | | 0.1542 | 9650 | 0.0002 | - | | 0.1550 | 9700 | 0.0002 | - | | 0.1558 | 9750 | 0.0002 | - | | 0.1566 | 9800 | 0.0002 | - | | 0.1574 | 9850 | 0.0002 | - | | 0.1582 | 9900 | 0.0002 | - | | 0.1590 | 9950 | 0.0002 | - | | 0.1598 | 10000 | 0.0002 | - | | 0.1606 | 10050 | 0.0002 | - | | 0.1614 | 10100 | 0.0002 | - | | 0.1622 | 10150 | 0.0002 | - | | 0.1630 | 10200 | 0.0002 | - | | 0.1638 | 10250 | 0.0002 | - | | 0.1646 | 10300 | 0.0002 | - | | 0.1654 | 10350 | 0.0002 | - | | 0.1662 | 10400 | 0.0002 | - | | 0.1670 | 10450 | 0.0002 | - | | 0.1678 | 10500 | 0.0002 | - | | 0.1686 | 10550 | 0.0002 | - | | 0.1694 | 10600 | 0.0002 | - | | 0.1702 | 10650 | 0.0002 | - | | 0.1710 | 10700 | 0.0002 | - | | 0.1718 | 10750 | 0.0002 | - | | 0.1726 | 10800 | 0.0002 | - | | 0.1734 | 10850 | 0.0002 | - | | 0.1742 | 10900 | 0.0002 | - | | 0.1750 | 10950 | 0.0002 | - | | 0.1758 | 11000 | 0.0002 | - | | 0.1766 | 11050 | 0.0002 | - | | 0.1774 | 11100 | 0.0002 | - | | 0.1782 | 11150 | 0.0002 | - | | 0.1790 | 11200 | 0.0002 | - | | 0.1798 | 11250 | 0.0002 | - | | 0.1806 | 11300 | 0.0002 | - | | 0.1814 | 11350 | 0.0002 | - | | 0.1822 | 11400 | 0.0002 | - | | 0.1830 | 11450 | 0.0002 | - | | 0.1838 | 11500 | 0.0002 | - | | 0.1846 | 11550 | 0.0002 | - | | 0.1854 | 11600 | 0.0002 | - | | 0.1862 | 11650 | 0.0002 | - | | 0.1870 | 11700 | 0.0002 | - | | 0.1878 | 11750 | 0.0002 | - | | 0.1886 | 11800 | 0.0001 | - | | 0.1894 | 11850 | 0.0002 | - | | 0.1902 | 11900 | 0.0002 | - | | 0.1910 | 11950 | 0.0001 | - | | 0.1918 | 12000 | 0.0001 | - | | 0.1926 | 12050 | 0.0001 | - | | 0.1934 | 12100 | 0.0001 | - | | 0.1942 | 12150 | 0.0001 | - | | 0.1950 | 12200 | 0.0001 | - | | 0.1958 | 12250 | 0.0001 | - | | 0.1966 | 12300 | 0.0001 | - | | 0.1974 | 12350 | 0.0001 | - | | 0.1982 | 12400 | 0.0001 | - | | 0.1990 | 12450 | 0.0001 | - | | 0.1998 | 12500 | 0.0001 | - | | 0.2006 | 12550 | 0.0001 | - | | 0.2014 | 12600 | 0.0001 | - | | 0.2022 | 12650 | 0.0001 | - | | 0.2030 | 12700 | 0.0001 | - | | 0.2038 | 12750 | 0.0001 | - | | 0.2046 | 12800 | 0.0001 | - | | 0.2054 | 12850 | 0.0001 | - | | 0.2062 | 12900 | 0.0001 | - | | 0.2070 | 12950 | 0.0001 | - | | 0.2078 | 13000 | 0.0001 | - | | 0.2086 | 13050 | 0.0001 | - | | 0.2094 | 13100 | 0.0001 | - | | 0.2102 | 13150 | 0.0001 | - | | 0.2110 | 13200 | 0.0001 | - | | 0.2118 | 13250 | 0.0001 | - | | 0.2126 | 13300 | 0.0001 | - | | 0.2134 | 13350 | 0.0001 | - | | 0.2142 | 13400 | 0.0001 | - | | 0.2150 | 13450 | 0.0001 | - | | 0.2158 | 13500 | 0.0001 | - | | 0.2166 | 13550 | 0.0001 | - | | 0.2174 | 13600 | 0.0001 | - | | 0.2182 | 13650 | 0.0001 | - | | 0.2190 | 13700 | 0.0001 | - | | 0.2198 | 13750 | 0.0001 | - | | 0.2206 | 13800 | 0.0001 | - | | 0.2214 | 13850 | 0.0001 | - | | 0.2222 | 13900 | 0.0001 | - | | 0.2230 | 13950 | 0.0001 | - | | 0.2238 | 14000 | 0.0001 | - | | 0.2246 | 14050 | 0.0001 | - | | 0.2254 | 14100 | 0.0001 | - | | 0.2262 | 14150 | 0.0001 | - | | 0.2270 | 14200 | 0.0001 | - | | 0.2278 | 14250 | 0.0001 | - | | 0.2286 | 14300 | 0.0001 | - | | 0.2294 | 14350 | 0.0001 | - | | 0.2302 | 14400 | 0.0001 | - | | 0.2310 | 14450 | 0.0001 | - | | 0.2318 | 14500 | 0.0001 | - | | 0.2326 | 14550 | 0.0001 | - | | 0.2334 | 14600 | 0.0001 | - | | 0.2342 | 14650 | 0.0001 | - | | 0.2350 | 14700 | 0.0001 | - | | 0.2358 | 14750 | 0.0001 | - | | 0.2366 | 14800 | 0.0001 | - | | 0.2374 | 14850 | 0.0001 | - | | 0.2382 | 14900 | 0.0001 | - | | 0.2390 | 14950 | 0.0001 | - | | 0.2398 | 15000 | 0.0001 | - | | 0.2406 | 15050 | 0.0001 | - | | 0.2414 | 15100 | 0.0001 | - | | 0.2422 | 15150 | 0.0001 | - | | 0.2430 | 15200 | 0.0001 | - | | 0.2438 | 15250 | 0.0001 | - | | 0.2446 | 15300 | 0.0001 | - | | 0.2454 | 15350 | 0.0001 | - | | 0.2462 | 15400 | 0.0001 | - | | 0.2470 | 15450 | 0.0001 | - | | 0.2478 | 15500 | 0.0001 | - | | 0.2485 | 15550 | 0.0001 | - | | 0.2493 | 15600 | 0.0001 | - | | 0.2501 | 15650 | 0.0001 | - | | 0.2509 | 15700 | 0.0001 | - | | 0.2517 | 15750 | 0.0001 | - | | 0.2525 | 15800 | 0.0001 | - | | 0.2533 | 15850 | 0.0001 | - | | 0.2541 | 15900 | 0.0001 | - | | 0.2549 | 15950 | 0.0001 | - | | 0.2557 | 16000 | 0.0001 | - | | 0.2565 | 16050 | 0.0001 | - | | 0.2573 | 16100 | 0.0001 | - | | 0.2581 | 16150 | 0.0001 | - | | 0.2589 | 16200 | 0.0001 | - | | 0.2597 | 16250 | 0.0001 | - | | 0.2605 | 16300 | 0.0001 | - | | 0.2613 | 16350 | 0.0001 | - | | 0.2621 | 16400 | 0.0001 | - | | 0.2629 | 16450 | 0.0011 | - | | 0.2637 | 16500 | 0.0011 | - | | 0.2645 | 16550 | 0.0022 | - | | 0.2653 | 16600 | 0.0055 | - | | 0.2661 | 16650 | 0.0012 | - | | 0.2669 | 16700 | 0.0023 | - | | 0.2677 | 16750 | 0.0016 | - | | 0.2685 | 16800 | 0.0001 | - | | 0.2693 | 16850 | 0.0001 | - | | 0.2701 | 16900 | 0.0001 | - | | 0.2709 | 16950 | 0.0001 | - | | 0.2717 | 17000 | 0.0001 | - | | 0.2725 | 17050 | 0.0001 | - | | 0.2733 | 17100 | 0.0001 | - | | 0.2741 | 17150 | 0.0001 | - | | 0.2749 | 17200 | 0.0001 | - | | 0.2757 | 17250 | 0.0001 | - | | 0.2765 | 17300 | 0.0001 | - | | 0.2773 | 17350 | 0.0001 | - | | 0.2781 | 17400 | 0.0001 | - | | 0.2789 | 17450 | 0.0001 | - | | 0.2797 | 17500 | 0.0001 | - | | 0.2805 | 17550 | 0.0001 | - | | 0.2813 | 17600 | 0.0001 | - | | 0.2821 | 17650 | 0.0001 | - | | 0.2829 | 17700 | 0.0001 | - | | 0.2837 | 17750 | 0.0001 | - | | 0.2845 | 17800 | 0.0003 | - | | 0.2853 | 17850 | 0.0001 | - | | 0.2861 | 17900 | 0.0001 | - | | 0.2869 | 17950 | 0.0001 | - | | 0.2877 | 18000 | 0.0001 | - | | 0.2885 | 18050 | 0.0001 | - | | 0.2893 | 18100 | 0.0001 | - | | 0.2901 | 18150 | 0.0001 | - | | 0.2909 | 18200 | 0.0001 | - | | 0.2917 | 18250 | 0.0001 | - | | 0.2925 | 18300 | 0.0001 | - | | 0.2933 | 18350 | 0.0001 | - | | 0.2941 | 18400 | 0.0001 | - | | 0.2949 | 18450 | 0.0001 | - | | 0.2957 | 18500 | 0.0001 | - | | 0.2965 | 18550 | 0.0001 | - | | 0.2973 | 18600 | 0.0001 | - | | 0.2981 | 18650 | 0.0001 | - | | 0.2989 | 18700 | 0.0001 | - | | 0.2997 | 18750 | 0.0001 | - | | 0.3005 | 18800 | 0.0001 | - | | 0.3013 | 18850 | 0.0001 | - | | 0.3021 | 18900 | 0.0001 | - | | 0.3029 | 18950 | 0.0001 | - | | 0.3037 | 19000 | 0.0001 | - | | 0.3045 | 19050 | 0.0001 | - | | 0.3053 | 19100 | 0.0001 | - | | 0.3061 | 19150 | 0.0001 | - | | 0.3069 | 19200 | 0.0001 | - | | 0.3077 | 19250 | 0.0001 | - | | 0.3085 | 19300 | 0.0001 | - | | 0.3093 | 19350 | 0.0001 | - | | 0.3101 | 19400 | 0.0001 | - | | 0.3109 | 19450 | 0.0001 | - | | 0.3117 | 19500 | 0.0001 | - | | 0.3125 | 19550 | 0.0001 | - | | 0.3133 | 19600 | 0.0001 | - | | 0.3141 | 19650 | 0.0001 | - | | 0.3149 | 19700 | 0.0001 | - | | 0.3157 | 19750 | 0.0001 | - | | 0.3165 | 19800 | 0.0 | - | | 0.3173 | 19850 | 0.0001 | - | | 0.3181 | 19900 | 0.0001 | - | | 0.3189 | 19950 | 0.0001 | - | | 0.3197 | 20000 | 0.0001 | - | | 0.3205 | 20050 | 0.0001 | - | | 0.3213 | 20100 | 0.0001 | - | | 0.3221 | 20150 | 0.0001 | - | | 0.3229 | 20200 | 0.0 | - | | 0.3237 | 20250 | 0.0001 | - | | 0.3245 | 20300 | 0.0 | - | | 0.3253 | 20350 | 0.0001 | - | | 0.3261 | 20400 | 0.0 | - | | 0.3269 | 20450 | 0.0 | - | | 0.3277 | 20500 | 0.0 | - | | 0.3285 | 20550 | 0.0001 | - | | 0.3293 | 20600 | 0.0 | - | | 0.3301 | 20650 | 0.0 | - | | 0.3309 | 20700 | 0.0 | - | | 0.3317 | 20750 | 0.0 | - | | 0.3325 | 20800 | 0.0 | - | | 0.3333 | 20850 | 0.0 | - | | 0.3341 | 20900 | 0.0 | - | | 0.3349 | 20950 | 0.0 | - | | 0.3357 | 21000 | 0.0 | - | | 0.3365 | 21050 | 0.0 | - | | 0.3373 | 21100 | 0.0 | - | | 0.3381 | 21150 | 0.0 | - | | 0.3389 | 21200 | 0.0 | - | | 0.3397 | 21250 | 0.0 | - | | 0.3405 | 21300 | 0.0 | - | | 0.3413 | 21350 | 0.0 | - | | 0.3421 | 21400 | 0.0 | - | | 0.3429 | 21450 | 0.0 | - | | 0.3437 | 21500 | 0.0 | - | | 0.3445 | 21550 | 0.0 | - | | 0.3453 | 21600 | 0.0 | - | | 0.3461 | 21650 | 0.0 | - | | 0.3469 | 21700 | 0.0 | - | | 0.3476 | 21750 | 0.0 | - | | 0.3484 | 21800 | 0.0 | - | | 0.3492 | 21850 | 0.0 | - | | 0.3500 | 21900 | 0.0 | - | | 0.3508 | 21950 | 0.0 | - | | 0.3516 | 22000 | 0.0 | - | | 0.3524 | 22050 | 0.0 | - | | 0.3532 | 22100 | 0.0 | - | | 0.3540 | 22150 | 0.0 | - | | 0.3548 | 22200 | 0.0 | - | | 0.3556 | 22250 | 0.0 | - | | 0.3564 | 22300 | 0.0 | - | | 0.3572 | 22350 | 0.0 | - | | 0.3580 | 22400 | 0.0 | - | | 0.3588 | 22450 | 0.0 | - | | 0.3596 | 22500 | 0.0 | - | | 0.3604 | 22550 | 0.0 | - | | 0.3612 | 22600 | 0.0 | - | | 0.3620 | 22650 | 0.0 | - | | 0.3628 | 22700 | 0.0 | - | | 0.3636 | 22750 | 0.0 | - | | 0.3644 | 22800 | 0.0 | - | | 0.3652 | 22850 | 0.0 | - | | 0.3660 | 22900 | 0.0 | - | | 0.3668 | 22950 | 0.0 | - | | 0.3676 | 23000 | 0.0 | - | | 0.3684 | 23050 | 0.0 | - | | 0.3692 | 23100 | 0.0 | - | | 0.3700 | 23150 | 0.0 | - | | 0.3708 | 23200 | 0.0 | - | | 0.3716 | 23250 | 0.0 | - | | 0.3724 | 23300 | 0.0 | - | | 0.3732 | 23350 | 0.0 | - | | 0.3740 | 23400 | 0.0 | - | | 0.3748 | 23450 | 0.0 | - | | 0.3756 | 23500 | 0.0 | - | | 0.3764 | 23550 | 0.0 | - | | 0.3772 | 23600 | 0.0 | - | | 0.3780 | 23650 | 0.0 | - | | 0.3788 | 23700 | 0.0 | - | | 0.3796 | 23750 | 0.0 | - | | 0.3804 | 23800 | 0.0 | - | | 0.3812 | 23850 | 0.0 | - | | 0.3820 | 23900 | 0.0 | - | | 0.3828 | 23950 | 0.0 | - | | 0.3836 | 24000 | 0.0 | - | | 0.3844 | 24050 | 0.0 | - | | 0.3852 | 24100 | 0.0 | - | | 0.3860 | 24150 | 0.0 | - | | 0.3868 | 24200 | 0.0 | - | | 0.3876 | 24250 | 0.0 | - | | 0.3884 | 24300 | 0.0 | - | | 0.3892 | 24350 | 0.0 | - | | 0.3900 | 24400 | 0.0 | - | | 0.3908 | 24450 | 0.0 | - | | 0.3916 | 24500 | 0.0 | - | | 0.3924 | 24550 | 0.0 | - | | 0.3932 | 24600 | 0.0 | - | | 0.3940 | 24650 | 0.0 | - | | 0.3948 | 24700 | 0.0 | - | | 0.3956 | 24750 | 0.0 | - | | 0.3964 | 24800 | 0.0 | - | | 0.3972 | 24850 | 0.0 | - | | 0.3980 | 24900 | 0.0 | - | | 0.3988 | 24950 | 0.0 | - | | 0.3996 | 25000 | 0.0 | - | | 0.4004 | 25050 | 0.0 | - | | 0.4012 | 25100 | 0.0 | - | | 0.4020 | 25150 | 0.0 | - | | 0.4028 | 25200 | 0.0 | - | | 0.4036 | 25250 | 0.0 | - | | 0.4044 | 25300 | 0.0 | - | | 0.4052 | 25350 | 0.0 | - | | 0.4060 | 25400 | 0.0 | - | | 0.4068 | 25450 | 0.0 | - | | 0.4076 | 25500 | 0.0 | - | | 0.4084 | 25550 | 0.0 | - | | 0.4092 | 25600 | 0.0 | - | | 0.4100 | 25650 | 0.0 | - | | 0.4108 | 25700 | 0.0 | - | | 0.4116 | 25750 | 0.0 | - | | 0.4124 | 25800 | 0.0 | - | | 0.4132 | 25850 | 0.0 | - | | 0.4140 | 25900 | 0.0 | - | | 0.4148 | 25950 | 0.0 | - | | 0.4156 | 26000 | 0.0 | - | | 0.4164 | 26050 | 0.0 | - | | 0.4172 | 26100 | 0.0 | - | | 0.4180 | 26150 | 0.0 | - | | 0.4188 | 26200 | 0.0 | - | | 0.4196 | 26250 | 0.0 | - | | 0.4204 | 26300 | 0.0 | - | | 0.4212 | 26350 | 0.0 | - | | 0.4220 | 26400 | 0.0 | - | | 0.4228 | 26450 | 0.0 | - | | 0.4236 | 26500 | 0.0 | - | | 0.4244 | 26550 | 0.0 | - | | 0.4252 | 26600 | 0.0 | - | | 0.4260 | 26650 | 0.0 | - | | 0.4268 | 26700 | 0.0 | - | | 0.4276 | 26750 | 0.0 | - | | 0.4284 | 26800 | 0.0 | - | | 0.4292 | 26850 | 0.0 | - | | 0.4300 | 26900 | 0.0 | - | | 0.4308 | 26950 | 0.0 | - | | 0.4316 | 27000 | 0.0 | - | | 0.4324 | 27050 | 0.0 | - | | 0.4332 | 27100 | 0.0 | - | | 0.4340 | 27150 | 0.0 | - | | 0.4348 | 27200 | 0.0 | - | | 0.4356 | 27250 | 0.0 | - | | 0.4364 | 27300 | 0.0 | - | | 0.4372 | 27350 | 0.0 | - | | 0.4380 | 27400 | 0.0 | - | | 0.4388 | 27450 | 0.0 | - | | 0.4396 | 27500 | 0.0 | - | | 0.4404 | 27550 | 0.0 | - | | 0.4412 | 27600 | 0.0 | - | | 0.4420 | 27650 | 0.0 | - | | 0.4428 | 27700 | 0.0 | - | | 0.4436 | 27750 | 0.0 | - | | 0.4444 | 27800 | 0.0 | - | | 0.4452 | 27850 | 0.0 | - | | 0.4460 | 27900 | 0.0 | - | | 0.4467 | 27950 | 0.0 | - | | 0.4475 | 28000 | 0.0 | - | | 0.4483 | 28050 | 0.0 | - | | 0.4491 | 28100 | 0.0 | - | | 0.4499 | 28150 | 0.0 | - | | 0.4507 | 28200 | 0.0 | - | | 0.4515 | 28250 | 0.0 | - | | 0.4523 | 28300 | 0.0 | - | | 0.4531 | 28350 | 0.0 | - | | 0.4539 | 28400 | 0.0 | - | | 0.4547 | 28450 | 0.0 | - | | 0.4555 | 28500 | 0.0 | - | | 0.4563 | 28550 | 0.0 | - | | 0.4571 | 28600 | 0.0 | - | | 0.4579 | 28650 | 0.0 | - | | 0.4587 | 28700 | 0.0 | - | | 0.4595 | 28750 | 0.0 | - | | 0.4603 | 28800 | 0.0 | - | | 0.4611 | 28850 | 0.0 | - | | 0.4619 | 28900 | 0.0 | - | | 0.4627 | 28950 | 0.0 | - | | 0.4635 | 29000 | 0.0 | - | | 0.4643 | 29050 | 0.0 | - | | 0.4651 | 29100 | 0.0 | - | | 0.4659 | 29150 | 0.0 | - | | 0.4667 | 29200 | 0.0 | - | | 0.4675 | 29250 | 0.0 | - | | 0.4683 | 29300 | 0.0 | - | | 0.4691 | 29350 | 0.0003 | - | | 0.4699 | 29400 | 0.0 | - | | 0.4707 | 29450 | 0.0005 | - | | 0.4715 | 29500 | 0.0 | - | | 0.4723 | 29550 | 0.0 | - | | 0.4731 | 29600 | 0.0 | - | | 0.4739 | 29650 | 0.0001 | - | | 0.4747 | 29700 | 0.0 | - | | 0.4755 | 29750 | 0.0 | - | | 0.4763 | 29800 | 0.0 | - | | 0.4771 | 29850 | 0.0 | - | | 0.4779 | 29900 | 0.0 | - | | 0.4787 | 29950 | 0.0 | - | | 0.4795 | 30000 | 0.0 | - | | 0.4803 | 30050 | 0.0 | - | | 0.4811 | 30100 | 0.0 | - | | 0.4819 | 30150 | 0.0 | - | | 0.4827 | 30200 | 0.0 | - | | 0.4835 | 30250 | 0.0 | - | | 0.4843 | 30300 | 0.0 | - | | 0.4851 | 30350 | 0.0 | - | | 0.4859 | 30400 | 0.0 | - | | 0.4867 | 30450 | 0.0 | - | | 0.4875 | 30500 | 0.0 | - | | 0.4883 | 30550 | 0.0 | - | | 0.4891 | 30600 | 0.0 | - | | 0.4899 | 30650 | 0.0 | - | | 0.4907 | 30700 | 0.0 | - | | 0.4915 | 30750 | 0.0 | - | | 0.4923 | 30800 | 0.0 | - | | 0.4931 | 30850 | 0.0 | - | | 0.4939 | 30900 | 0.0 | - | | 0.4947 | 30950 | 0.0 | - | | 0.4955 | 31000 | 0.0 | - | | 0.4963 | 31050 | 0.0 | - | | 0.4971 | 31100 | 0.0 | - | | 0.4979 | 31150 | 0.0 | - | | 0.4987 | 31200 | 0.0 | - | | 0.4995 | 31250 | 0.0 | - | | 0.5003 | 31300 | 0.0 | - | | 0.5011 | 31350 | 0.0 | - | | 0.5019 | 31400 | 0.0 | - | | 0.5027 | 31450 | 0.0 | - | | 0.5035 | 31500 | 0.0 | - | | 0.5043 | 31550 | 0.0043 | - | | 0.5051 | 31600 | 0.0008 | - | | 0.5059 | 31650 | 0.0 | - | | 0.5067 | 31700 | 0.0 | - | | 0.5075 | 31750 | 0.0 | - | | 0.5083 | 31800 | 0.0 | - | | 0.5091 | 31850 | 0.0 | - | | 0.5099 | 31900 | 0.0 | - | | 0.5107 | 31950 | 0.0 | - | | 0.5115 | 32000 | 0.0 | - | | 0.5123 | 32050 | 0.0 | - | | 0.5131 | 32100 | 0.0 | - | | 0.5139 | 32150 | 0.0 | - | | 0.5147 | 32200 | 0.0 | - | | 0.5155 | 32250 | 0.0 | - | | 0.5163 | 32300 | 0.0 | - | | 0.5171 | 32350 | 0.0 | - | | 0.5179 | 32400 | 0.0 | - | | 0.5187 | 32450 | 0.0 | - | | 0.5195 | 32500 | 0.0 | - | | 0.5203 | 32550 | 0.0 | - | | 0.5211 | 32600 | 0.0 | - | | 0.5219 | 32650 | 0.0 | - | | 0.5227 | 32700 | 0.0 | - | | 0.5235 | 32750 | 0.0 | - | | 0.5243 | 32800 | 0.0 | - | | 0.5251 | 32850 | 0.0 | - | | 0.5259 | 32900 | 0.0 | - | | 0.5267 | 32950 | 0.0 | - | | 0.5275 | 33000 | 0.0 | - | | 0.5283 | 33050 | 0.0 | - | | 0.5291 | 33100 | 0.0 | - | | 0.5299 | 33150 | 0.0 | - | | 0.5307 | 33200 | 0.0 | - | | 0.5315 | 33250 | 0.0 | - | | 0.5323 | 33300 | 0.0 | - | | 0.5331 | 33350 | 0.0 | - | | 0.5339 | 33400 | 0.0 | - | | 0.5347 | 33450 | 0.0 | - | | 0.5355 | 33500 | 0.0 | - | | 0.5363 | 33550 | 0.0 | - | | 0.5371 | 33600 | 0.0 | - | | 0.5379 | 33650 | 0.0 | - | | 0.5387 | 33700 | 0.0 | - | | 0.5395 | 33750 | 0.0 | - | | 0.5403 | 33800 | 0.0 | - | | 0.5411 | 33850 | 0.0 | - | | 0.5419 | 33900 | 0.0 | - | | 0.5427 | 33950 | 0.0 | - | | 0.5435 | 34000 | 0.0 | - | | 0.5443 | 34050 | 0.0 | - | | 0.5451 | 34100 | 0.0 | - | | 0.5458 | 34150 | 0.0 | - | | 0.5466 | 34200 | 0.0 | - | | 0.5474 | 34250 | 0.0 | - | | 0.5482 | 34300 | 0.0 | - | | 0.5490 | 34350 | 0.0 | - | | 0.5498 | 34400 | 0.0 | - | | 0.5506 | 34450 | 0.0 | - | | 0.5514 | 34500 | 0.0 | - | | 0.5522 | 34550 | 0.0 | - | | 0.5530 | 34600 | 0.0 | - | | 0.5538 | 34650 | 0.0 | - | | 0.5546 | 34700 | 0.0 | - | | 0.5554 | 34750 | 0.0 | - | | 0.5562 | 34800 | 0.0 | - | | 0.5570 | 34850 | 0.0 | - | | 0.5578 | 34900 | 0.0 | - | | 0.5586 | 34950 | 0.0 | - | | 0.5594 | 35000 | 0.0 | - | | 0.5602 | 35050 | 0.0 | - | | 0.5610 | 35100 | 0.0 | - | | 0.5618 | 35150 | 0.0 | - | | 0.5626 | 35200 | 0.0 | - | | 0.5634 | 35250 | 0.0 | - | | 0.5642 | 35300 | 0.0 | - | | 0.5650 | 35350 | 0.0 | - | | 0.5658 | 35400 | 0.0 | - | | 0.5666 | 35450 | 0.0 | - | | 0.5674 | 35500 | 0.0 | - | | 0.5682 | 35550 | 0.0 | - | | 0.5690 | 35600 | 0.0 | - | | 0.5698 | 35650 | 0.0 | - | | 0.5706 | 35700 | 0.0 | - | | 0.5714 | 35750 | 0.0 | - | | 0.5722 | 35800 | 0.0 | - | | 0.5730 | 35850 | 0.0 | - | | 0.5738 | 35900 | 0.0 | - | | 0.5746 | 35950 | 0.0 | - | | 0.5754 | 36000 | 0.0 | - | | 0.5762 | 36050 | 0.0 | - | | 0.5770 | 36100 | 0.0 | - | | 0.5778 | 36150 | 0.0 | - | | 0.5786 | 36200 | 0.0 | - | | 0.5794 | 36250 | 0.0 | - | | 0.5802 | 36300 | 0.0 | - | | 0.5810 | 36350 | 0.0 | - | | 0.5818 | 36400 | 0.0 | - | | 0.5826 | 36450 | 0.0 | - | | 0.5834 | 36500 | 0.0 | - | | 0.5842 | 36550 | 0.0 | - | | 0.5850 | 36600 | 0.0 | - | | 0.5858 | 36650 | 0.0 | - | | 0.5866 | 36700 | 0.0 | - | | 0.5874 | 36750 | 0.0 | - | | 0.5882 | 36800 | 0.0 | - | | 0.5890 | 36850 | 0.0 | - | | 0.5898 | 36900 | 0.0 | - | | 0.5906 | 36950 | 0.0 | - | | 0.5914 | 37000 | 0.0 | - | | 0.5922 | 37050 | 0.0 | - | | 0.5930 | 37100 | 0.0 | - | | 0.5938 | 37150 | 0.0 | - | | 0.5946 | 37200 | 0.0 | - | | 0.5954 | 37250 | 0.0 | - | | 0.5962 | 37300 | 0.0 | - | | 0.5970 | 37350 | 0.0 | - | | 0.5978 | 37400 | 0.0 | - | | 0.5986 | 37450 | 0.0 | - | | 0.5994 | 37500 | 0.0 | - | | 0.6002 | 37550 | 0.0 | - | | 0.6010 | 37600 | 0.0 | - | | 0.6018 | 37650 | 0.0 | - | | 0.6026 | 37700 | 0.0 | - | | 0.6034 | 37750 | 0.0 | - | | 0.6042 | 37800 | 0.0 | - | | 0.6050 | 37850 | 0.0 | - | | 0.6058 | 37900 | 0.0 | - | | 0.6066 | 37950 | 0.0 | - | | 0.6074 | 38000 | 0.0 | - | | 0.6082 | 38050 | 0.0 | - | | 0.6090 | 38100 | 0.0 | - | | 0.6098 | 38150 | 0.0 | - | | 0.6106 | 38200 | 0.0 | - | | 0.6114 | 38250 | 0.0 | - | | 0.6122 | 38300 | 0.0 | - | | 0.6130 | 38350 | 0.0 | - | | 0.6138 | 38400 | 0.0 | - | | 0.6146 | 38450 | 0.0 | - | | 0.6154 | 38500 | 0.0 | - | | 0.6162 | 38550 | 0.0 | - | | 0.6170 | 38600 | 0.0 | - | | 0.6178 | 38650 | 0.0 | - | | 0.6186 | 38700 | 0.0 | - | | 0.6194 | 38750 | 0.0 | - | | 0.6202 | 38800 | 0.0 | - | | 0.6210 | 38850 | 0.0 | - | | 0.6218 | 38900 | 0.0 | - | | 0.6226 | 38950 | 0.0 | - | | 0.6234 | 39000 | 0.0 | - | | 0.6242 | 39050 | 0.0 | - | | 0.6250 | 39100 | 0.0 | - | | 0.6258 | 39150 | 0.0 | - | | 0.6266 | 39200 | 0.0 | - | | 0.6274 | 39250 | 0.0006 | - | | 0.6282 | 39300 | 0.0 | - | | 0.6290 | 39350 | 0.0022 | - | | 0.6298 | 39400 | 0.0 | - | | 0.6306 | 39450 | 0.0 | - | | 0.6314 | 39500 | 0.0 | - | | 0.6322 | 39550 | 0.0 | - | | 0.6330 | 39600 | 0.0 | - | | 0.6338 | 39650 | 0.0 | - | | 0.6346 | 39700 | 0.0 | - | | 0.6354 | 39750 | 0.0 | - | | 0.6362 | 39800 | 0.0 | - | | 0.6370 | 39850 | 0.0 | - | | 0.6378 | 39900 | 0.0 | - | | 0.6386 | 39950 | 0.0 | - | | 0.6394 | 40000 | 0.0 | - | | 0.6402 | 40050 | 0.0 | - | | 0.6410 | 40100 | 0.0 | - | | 0.6418 | 40150 | 0.0 | - | | 0.6426 | 40200 | 0.0 | - | | 0.6434 | 40250 | 0.0 | - | | 0.6442 | 40300 | 0.0 | - | | 0.6449 | 40350 | 0.0 | - | | 0.6457 | 40400 | 0.0 | - | | 0.6465 | 40450 | 0.0 | - | | 0.6473 | 40500 | 0.0 | - | | 0.6481 | 40550 | 0.0 | - | | 0.6489 | 40600 | 0.0 | - | | 0.6497 | 40650 | 0.0 | - | | 0.6505 | 40700 | 0.0 | - | | 0.6513 | 40750 | 0.0 | - | | 0.6521 | 40800 | 0.0 | - | | 0.6529 | 40850 | 0.0 | - | | 0.6537 | 40900 | 0.0 | - | | 0.6545 | 40950 | 0.0 | - | | 0.6553 | 41000 | 0.0 | - | | 0.6561 | 41050 | 0.0 | - | | 0.6569 | 41100 | 0.0 | - | | 0.6577 | 41150 | 0.0 | - | | 0.6585 | 41200 | 0.0 | - | | 0.6593 | 41250 | 0.0 | - | | 0.6601 | 41300 | 0.0 | - | | 0.6609 | 41350 | 0.0 | - | | 0.6617 | 41400 | 0.0 | - | | 0.6625 | 41450 | 0.0 | - | | 0.6633 | 41500 | 0.0 | - | | 0.6641 | 41550 | 0.0 | - | | 0.6649 | 41600 | 0.0 | - | | 0.6657 | 41650 | 0.0 | - | | 0.6665 | 41700 | 0.0 | - | | 0.6673 | 41750 | 0.0 | - | | 0.6681 | 41800 | 0.0 | - | | 0.6689 | 41850 | 0.0 | - | | 0.6697 | 41900 | 0.0 | - | | 0.6705 | 41950 | 0.0 | - | | 0.6713 | 42000 | 0.0 | - | | 0.6721 | 42050 | 0.0 | - | | 0.6729 | 42100 | 0.0 | - | | 0.6737 | 42150 | 0.0 | - | | 0.6745 | 42200 | 0.0 | - | | 0.6753 | 42250 | 0.0 | - | | 0.6761 | 42300 | 0.0 | - | | 0.6769 | 42350 | 0.0 | - | | 0.6777 | 42400 | 0.0 | - | | 0.6785 | 42450 | 0.0 | - | | 0.6793 | 42500 | 0.0 | - | | 0.6801 | 42550 | 0.0 | - | | 0.6809 | 42600 | 0.0 | - | | 0.6817 | 42650 | 0.0 | - | | 0.6825 | 42700 | 0.0 | - | | 0.6833 | 42750 | 0.0 | - | | 0.6841 | 42800 | 0.0 | - | | 0.6849 | 42850 | 0.0 | - | | 0.6857 | 42900 | 0.0 | - | | 0.6865 | 42950 | 0.0 | - | | 0.6873 | 43000 | 0.0 | - | | 0.6881 | 43050 | 0.0 | - | | 0.6889 | 43100 | 0.0 | - | | 0.6897 | 43150 | 0.0 | - | | 0.6905 | 43200 | 0.0 | - | | 0.6913 | 43250 | 0.0 | - | | 0.6921 | 43300 | 0.0 | - | | 0.6929 | 43350 | 0.0 | - | | 0.6937 | 43400 | 0.0 | - | | 0.6945 | 43450 | 0.0 | - | | 0.6953 | 43500 | 0.0 | - | | 0.6961 | 43550 | 0.0 | - | | 0.6969 | 43600 | 0.0 | - | | 0.6977 | 43650 | 0.0 | - | | 0.6985 | 43700 | 0.0 | - | | 0.6993 | 43750 | 0.0 | - | | 0.7001 | 43800 | 0.0 | - | | 0.7009 | 43850 | 0.0 | - | | 0.7017 | 43900 | 0.0 | - | | 0.7025 | 43950 | 0.0 | - | | 0.7033 | 44000 | 0.0 | - | | 0.7041 | 44050 | 0.0 | - | | 0.7049 | 44100 | 0.0 | - | | 0.7057 | 44150 | 0.0 | - | | 0.7065 | 44200 | 0.0 | - | | 0.7073 | 44250 | 0.0 | - | | 0.7081 | 44300 | 0.0 | - | | 0.7089 | 44350 | 0.0 | - | | 0.7097 | 44400 | 0.0 | - | | 0.7105 | 44450 | 0.0 | - | | 0.7113 | 44500 | 0.0 | - | | 0.7121 | 44550 | 0.0 | - | | 0.7129 | 44600 | 0.0 | - | | 0.7137 | 44650 | 0.0 | - | | 0.7145 | 44700 | 0.0 | - | | 0.7153 | 44750 | 0.0 | - | | 0.7161 | 44800 | 0.0 | - | | 0.7169 | 44850 | 0.0 | - | | 0.7177 | 44900 | 0.0 | - | | 0.7185 | 44950 | 0.0 | - | | 0.7193 | 45000 | 0.0 | - | | 0.7201 | 45050 | 0.0 | - | | 0.7209 | 45100 | 0.0 | - | | 0.7217 | 45150 | 0.0 | - | | 0.7225 | 45200 | 0.0 | - | | 0.7233 | 45250 | 0.0 | - | | 0.7241 | 45300 | 0.0 | - | | 0.7249 | 45350 | 0.0 | - | | 0.7257 | 45400 | 0.0 | - | | 0.7265 | 45450 | 0.0 | - | | 0.7273 | 45500 | 0.0 | - | | 0.7281 | 45550 | 0.0 | - | | 0.7289 | 45600 | 0.0 | - | | 0.7297 | 45650 | 0.0001 | - | | 0.7305 | 45700 | 0.0 | - | | 0.7313 | 45750 | 0.0 | - | | 0.7321 | 45800 | 0.0 | - | | 0.7329 | 45850 | 0.0 | - | | 0.7337 | 45900 | 0.0 | - | | 0.7345 | 45950 | 0.0 | - | | 0.7353 | 46000 | 0.0 | - | | 0.7361 | 46050 | 0.0 | - | | 0.7369 | 46100 | 0.0 | - | | 0.7377 | 46150 | 0.0 | - | | 0.7385 | 46200 | 0.0 | - | | 0.7393 | 46250 | 0.0 | - | | 0.7401 | 46300 | 0.0 | - | | 0.7409 | 46350 | 0.0 | - | | 0.7417 | 46400 | 0.0 | - | | 0.7425 | 46450 | 0.0 | - | | 0.7433 | 46500 | 0.0 | - | | 0.7440 | 46550 | 0.0 | - | | 0.7448 | 46600 | 0.0 | - | | 0.7456 | 46650 | 0.0 | - | | 0.7464 | 46700 | 0.0 | - | | 0.7472 | 46750 | 0.0 | - | | 0.7480 | 46800 | 0.0 | - | | 0.7488 | 46850 | 0.0 | - | | 0.7496 | 46900 | 0.0 | - | | 0.7504 | 46950 | 0.0 | - | | 0.7512 | 47000 | 0.0 | - | | 0.7520 | 47050 | 0.0 | - | | 0.7528 | 47100 | 0.0 | - | | 0.7536 | 47150 | 0.0 | - | | 0.7544 | 47200 | 0.0 | - | | 0.7552 | 47250 | 0.0 | - | | 0.7560 | 47300 | 0.0 | - | | 0.7568 | 47350 | 0.0 | - | | 0.7576 | 47400 | 0.0 | - | | 0.7584 | 47450 | 0.0 | - | | 0.7592 | 47500 | 0.0 | - | | 0.7600 | 47550 | 0.0 | - | | 0.7608 | 47600 | 0.0 | - | | 0.7616 | 47650 | 0.0 | - | | 0.7624 | 47700 | 0.0 | - | | 0.7632 | 47750 | 0.0 | - | | 0.7640 | 47800 | 0.0 | - | | 0.7648 | 47850 | 0.0 | - | | 0.7656 | 47900 | 0.0 | - | | 0.7664 | 47950 | 0.0 | - | | 0.7672 | 48000 | 0.0 | - | | 0.7680 | 48050 | 0.0 | - | | 0.7688 | 48100 | 0.0 | - | | 0.7696 | 48150 | 0.0 | - | | 0.7704 | 48200 | 0.0 | - | | 0.7712 | 48250 | 0.0 | - | | 0.7720 | 48300 | 0.0 | - | | 0.7728 | 48350 | 0.0 | - | | 0.7736 | 48400 | 0.0 | - | | 0.7744 | 48450 | 0.0 | - | | 0.7752 | 48500 | 0.0 | - | | 0.7760 | 48550 | 0.0 | - | | 0.7768 | 48600 | 0.0 | - | | 0.7776 | 48650 | 0.0 | - | | 0.7784 | 48700 | 0.0 | - | | 0.7792 | 48750 | 0.0 | - | | 0.7800 | 48800 | 0.0 | - | | 0.7808 | 48850 | 0.0 | - | | 0.7816 | 48900 | 0.0 | - | | 0.7824 | 48950 | 0.0 | - | | 0.7832 | 49000 | 0.0 | - | | 0.7840 | 49050 | 0.0 | - | | 0.7848 | 49100 | 0.0 | - | | 0.7856 | 49150 | 0.0 | - | | 0.7864 | 49200 | 0.0 | - | | 0.7872 | 49250 | 0.0 | - | | 0.7880 | 49300 | 0.0 | - | | 0.7888 | 49350 | 0.0 | - | | 0.7896 | 49400 | 0.0 | - | | 0.7904 | 49450 | 0.0 | - | | 0.7912 | 49500 | 0.0 | - | | 0.7920 | 49550 | 0.0 | - | | 0.7928 | 49600 | 0.0 | - | | 0.7936 | 49650 | 0.0 | - | | 0.7944 | 49700 | 0.0 | - | | 0.7952 | 49750 | 0.0 | - | | 0.7960 | 49800 | 0.0 | - | | 0.7968 | 49850 | 0.0 | - | | 0.7976 | 49900 | 0.0 | - | | 0.7984 | 49950 | 0.0 | - | | 0.7992 | 50000 | 0.0 | - | | 0.8000 | 50050 | 0.0 | - | | 0.8008 | 50100 | 0.0 | - | | 0.8016 | 50150 | 0.0 | - | | 0.8024 | 50200 | 0.0 | - | | 0.8032 | 50250 | 0.0 | - | | 0.8040 | 50300 | 0.0 | - | | 0.8048 | 50350 | 0.0 | - | | 0.8056 | 50400 | 0.0 | - | | 0.8064 | 50450 | 0.0 | - | | 0.8072 | 50500 | 0.0 | - | | 0.8080 | 50550 | 0.0 | - | | 0.8088 | 50600 | 0.0 | - | | 0.8096 | 50650 | 0.0 | - | | 0.8104 | 50700 | 0.0 | - | | 0.8112 | 50750 | 0.0 | - | | 0.8120 | 50800 | 0.0 | - | | 0.8128 | 50850 | 0.0 | - | | 0.8136 | 50900 | 0.0 | - | | 0.8144 | 50950 | 0.0 | - | | 0.8152 | 51000 | 0.0 | - | | 0.8160 | 51050 | 0.0 | - | | 0.8168 | 51100 | 0.0 | - | | 0.8176 | 51150 | 0.0 | - | | 0.8184 | 51200 | 0.0 | - | | 0.8192 | 51250 | 0.0 | - | | 0.8200 | 51300 | 0.0 | - | | 0.8208 | 51350 | 0.0 | - | | 0.8216 | 51400 | 0.0 | - | | 0.8224 | 51450 | 0.0 | - | | 0.8232 | 51500 | 0.0 | - | | 0.8240 | 51550 | 0.0 | - | | 0.8248 | 51600 | 0.0 | - | | 0.8256 | 51650 | 0.0 | - | | 0.8264 | 51700 | 0.0 | - | | 0.8272 | 51750 | 0.0 | - | | 0.8280 | 51800 | 0.0 | - | | 0.8288 | 51850 | 0.0 | - | | 0.8296 | 51900 | 0.0 | - | | 0.8304 | 51950 | 0.0 | - | | 0.8312 | 52000 | 0.0 | - | | 0.8320 | 52050 | 0.0 | - | | 0.8328 | 52100 | 0.0 | - | | 0.8336 | 52150 | 0.0 | - | | 0.8344 | 52200 | 0.0 | - | | 0.8352 | 52250 | 0.0 | - | | 0.8360 | 52300 | 0.0 | - | | 0.8368 | 52350 | 0.0 | - | | 0.8376 | 52400 | 0.0 | - | | 0.8384 | 52450 | 0.0 | - | | 0.8392 | 52500 | 0.0 | - | | 0.8400 | 52550 | 0.0 | - | | 0.8408 | 52600 | 0.0 | - | | 0.8416 | 52650 | 0.0 | - | | 0.8424 | 52700 | 0.0 | - | | 0.8432 | 52750 | 0.0 | - | | 0.8439 | 52800 | 0.0 | - | | 0.8447 | 52850 | 0.0 | - | | 0.8455 | 52900 | 0.0 | - | | 0.8463 | 52950 | 0.0 | - | | 0.8471 | 53000 | 0.0 | - | | 0.8479 | 53050 | 0.0 | - | | 0.8487 | 53100 | 0.0 | - | | 0.8495 | 53150 | 0.0 | - | | 0.8503 | 53200 | 0.0 | - | | 0.8511 | 53250 | 0.0 | - | | 0.8519 | 53300 | 0.0 | - | | 0.8527 | 53350 | 0.0 | - | | 0.8535 | 53400 | 0.0 | - | | 0.8543 | 53450 | 0.0 | - | | 0.8551 | 53500 | 0.0 | - | | 0.8559 | 53550 | 0.0 | - | | 0.8567 | 53600 | 0.0 | - | | 0.8575 | 53650 | 0.0 | - | | 0.8583 | 53700 | 0.0 | - | | 0.8591 | 53750 | 0.0 | - | | 0.8599 | 53800 | 0.0 | - | | 0.8607 | 53850 | 0.0 | - | | 0.8615 | 53900 | 0.0 | - | | 0.8623 | 53950 | 0.0 | - | | 0.8631 | 54000 | 0.0 | - | | 0.8639 | 54050 | 0.0 | - | | 0.8647 | 54100 | 0.0 | - | | 0.8655 | 54150 | 0.0 | - | | 0.8663 | 54200 | 0.0 | - | | 0.8671 | 54250 | 0.0 | - | | 0.8679 | 54300 | 0.0 | - | | 0.8687 | 54350 | 0.0 | - | | 0.8695 | 54400 | 0.0 | - | | 0.8703 | 54450 | 0.0 | - | | 0.8711 | 54500 | 0.0 | - | | 0.8719 | 54550 | 0.0 | - | | 0.8727 | 54600 | 0.0 | - | | 0.8735 | 54650 | 0.0 | - | | 0.8743 | 54700 | 0.0 | - | | 0.8751 | 54750 | 0.0 | - | | 0.8759 | 54800 | 0.0 | - | | 0.8767 | 54850 | 0.0 | - | | 0.8775 | 54900 | 0.0 | - | | 0.8783 | 54950 | 0.0 | - | | 0.8791 | 55000 | 0.0 | - | | 0.8799 | 55050 | 0.0 | - | | 0.8807 | 55100 | 0.0 | - | | 0.8815 | 55150 | 0.0 | - | | 0.8823 | 55200 | 0.0 | - | | 0.8831 | 55250 | 0.0 | - | | 0.8839 | 55300 | 0.0 | - | | 0.8847 | 55350 | 0.0 | - | | 0.8855 | 55400 | 0.0 | - | | 0.8863 | 55450 | 0.0 | - | | 0.8871 | 55500 | 0.0 | - | | 0.8879 | 55550 | 0.0 | - | | 0.8887 | 55600 | 0.0004 | - | | 0.8895 | 55650 | 0.0 | - | | 0.8903 | 55700 | 0.0 | - | | 0.8911 | 55750 | 0.0 | - | | 0.8919 | 55800 | 0.0 | - | | 0.8927 | 55850 | 0.0 | - | | 0.8935 | 55900 | 0.0 | - | | 0.8943 | 55950 | 0.0 | - | | 0.8951 | 56000 | 0.0 | - | | 0.8959 | 56050 | 0.0 | - | | 0.8967 | 56100 | 0.0 | - | | 0.8975 | 56150 | 0.0 | - | | 0.8983 | 56200 | 0.0 | - | | 0.8991 | 56250 | 0.0 | - | | 0.8999 | 56300 | 0.0 | - | | 0.9007 | 56350 | 0.0 | - | | 0.9015 | 56400 | 0.0 | - | | 0.9023 | 56450 | 0.0 | - | | 0.9031 | 56500 | 0.0 | - | | 0.9039 | 56550 | 0.0 | - | | 0.9047 | 56600 | 0.0 | - | | 0.9055 | 56650 | 0.0 | - | | 0.9063 | 56700 | 0.0 | - | | 0.9071 | 56750 | 0.0 | - | | 0.9079 | 56800 | 0.0 | - | | 0.9087 | 56850 | 0.0 | - | | 0.9095 | 56900 | 0.0 | - | | 0.9103 | 56950 | 0.0 | - | | 0.9111 | 57000 | 0.0 | - | | 0.9119 | 57050 | 0.0 | - | | 0.9127 | 57100 | 0.0 | - | | 0.9135 | 57150 | 0.0 | - | | 0.9143 | 57200 | 0.0 | - | | 0.9151 | 57250 | 0.0 | - | | 0.9159 | 57300 | 0.0 | - | | 0.9167 | 57350 | 0.0 | - | | 0.9175 | 57400 | 0.0 | - | | 0.9183 | 57450 | 0.0 | - | | 0.9191 | 57500 | 0.0 | - | | 0.9199 | 57550 | 0.0 | - | | 0.9207 | 57600 | 0.0 | - | | 0.9215 | 57650 | 0.0 | - | | 0.9223 | 57700 | 0.0 | - | | 0.9231 | 57750 | 0.0 | - | | 0.9239 | 57800 | 0.0 | - | | 0.9247 | 57850 | 0.0 | - | | 0.9255 | 57900 | 0.0 | - | | 0.9263 | 57950 | 0.0 | - | | 0.9271 | 58000 | 0.0 | - | | 0.9279 | 58050 | 0.0 | - | | 0.9287 | 58100 | 0.0 | - | | 0.9295 | 58150 | 0.0 | - | | 0.9303 | 58200 | 0.0 | - | | 0.9311 | 58250 | 0.0 | - | | 0.9319 | 58300 | 0.0 | - | | 0.9327 | 58350 | 0.0 | - | | 0.9335 | 58400 | 0.0 | - | | 0.9343 | 58450 | 0.0 | - | | 0.9351 | 58500 | 0.0 | - | | 0.9359 | 58550 | 0.0 | - | | 0.9367 | 58600 | 0.0 | - | | 0.9375 | 58650 | 0.0 | - | | 0.9383 | 58700 | 0.0 | - | | 0.9391 | 58750 | 0.0 | - | | 0.9399 | 58800 | 0.0 | - | | 0.9407 | 58850 | 0.0 | - | | 0.9415 | 58900 | 0.0 | - | | 0.9423 | 58950 | 0.0 | - | | 0.9430 | 59000 | 0.0 | - | | 0.9438 | 59050 | 0.0 | - | | 0.9446 | 59100 | 0.0 | - | | 0.9454 | 59150 | 0.0 | - | | 0.9462 | 59200 | 0.0 | - | | 0.9470 | 59250 | 0.0 | - | | 0.9478 | 59300 | 0.0 | - | | 0.9486 | 59350 | 0.0 | - | | 0.9494 | 59400 | 0.0 | - | | 0.9502 | 59450 | 0.0 | - | | 0.9510 | 59500 | 0.0 | - | | 0.9518 | 59550 | 0.0 | - | | 0.9526 | 59600 | 0.0 | - | | 0.9534 | 59650 | 0.0 | - | | 0.9542 | 59700 | 0.0 | - | | 0.9550 | 59750 | 0.0 | - | | 0.9558 | 59800 | 0.0 | - | | 0.9566 | 59850 | 0.0 | - | | 0.9574 | 59900 | 0.0 | - | | 0.9582 | 59950 | 0.0 | - | | 0.9590 | 60000 | 0.0 | - | | 0.9598 | 60050 | 0.0 | - | | 0.9606 | 60100 | 0.0 | - | | 0.9614 | 60150 | 0.0 | - | | 0.9622 | 60200 | 0.0 | - | | 0.9630 | 60250 | 0.0 | - | | 0.9638 | 60300 | 0.0 | - | | 0.9646 | 60350 | 0.0 | - | | 0.9654 | 60400 | 0.0 | - | | 0.9662 | 60450 | 0.0 | - | | 0.9670 | 60500 | 0.0 | - | | 0.9678 | 60550 | 0.0 | - | | 0.9686 | 60600 | 0.0 | - | | 0.9694 | 60650 | 0.0 | - | | 0.9702 | 60700 | 0.0 | - | | 0.9710 | 60750 | 0.0 | - | | 0.9718 | 60800 | 0.0 | - | | 0.9726 | 60850 | 0.0 | - | | 0.9734 | 60900 | 0.0 | - | | 0.9742 | 60950 | 0.0 | - | | 0.9750 | 61000 | 0.0 | - | | 0.9758 | 61050 | 0.0 | - | | 0.9766 | 61100 | 0.0 | - | | 0.9774 | 61150 | 0.0 | - | | 0.9782 | 61200 | 0.0 | - | | 0.9790 | 61250 | 0.0 | - | | 0.9798 | 61300 | 0.0 | - | | 0.9806 | 61350 | 0.0 | - | | 0.9814 | 61400 | 0.0 | - | | 0.9822 | 61450 | 0.0 | - | | 0.9830 | 61500 | 0.0 | - | | 0.9838 | 61550 | 0.0 | - | | 0.9846 | 61600 | 0.0 | - | | 0.9854 | 61650 | 0.0 | - | | 0.9862 | 61700 | 0.0 | - | | 0.9870 | 61750 | 0.0 | - | | 0.9878 | 61800 | 0.0 | - | | 0.9886 | 61850 | 0.0 | - | | 0.9894 | 61900 | 0.0 | - | | 0.9902 | 61950 | 0.0 | - | | 0.9910 | 62000 | 0.0 | - | | 0.9918 | 62050 | 0.0 | - | | 0.9926 | 62100 | 0.0 | - | | 0.9934 | 62150 | 0.0 | - | | 0.9942 | 62200 | 0.0 | - | | 0.9950 | 62250 | 0.0 | - | | 0.9958 | 62300 | 0.0 | - | | 0.9966 | 62350 | 0.0 | - | | 0.9974 | 62400 | 0.0 | - | | 0.9982 | 62450 | 0.0 | - | | 0.9990 | 62500 | 0.0 | - | | 0.9998 | 62550 | 0.0 | - | | 1.0 | 62563 | - | 0.0913 | ### Framework Versions - Python: 3.12.7 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.47.0 - PyTorch: 2.5.1+cu124 - Datasets: 3.1.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```