Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +1517 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +7 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1517 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- setfit
|
4 |
+
- sentence-transformers
|
5 |
+
- text-classification
|
6 |
+
- generated_from_setfit_trainer
|
7 |
+
widget:
|
8 |
+
- text: Now let us conceive a particular volition, namely, the mode of thinking whereby
|
9 |
+
the mind affirms, that the three interior angles of a triangle are equal to two
|
10 |
+
right angles.
|
11 |
+
- text: If we know beforehand what this state of affairs is, our desire is conscious;
|
12 |
+
if not, unconscious.
|
13 |
+
- text: 'The salvation of the soul in plain English: the world revolves around me.'
|
14 |
+
- text: Masculine myths find their most seductive incarnation in the hetaera; more
|
15 |
+
than any other woman, she is flesh and consciousness, idol, inspiration, muse;
|
16 |
+
painters and sculptors want her as their model; she will nourish poets' dreams;
|
17 |
+
it is in her that the intellectual will explore the treasures of feminine 'intuition';
|
18 |
+
she is more readily intelligent than the matron, because she is less set in hypocrisy.
|
19 |
+
- text: " Since 2004, the Mandiant name has represented unparalleled security expertise,\
|
20 |
+
\ earning the trust of cyber security professionals and company executives across\
|
21 |
+
\ the world. By joining this unparalleled frontline experience with our industry\
|
22 |
+
\ leading, nation-state grade threat intelligence and innovative technology, we\
|
23 |
+
\ have ensured that FireEye knows more about current advanced threats than anyone.\
|
24 |
+
\ Today the world looks a lot different than it did in 2004. The cyber security\
|
25 |
+
\ industry has expanded (some might say exploded), but through all this change,\
|
26 |
+
\ one thing has remained the same: there is no substitute for world-class expertise\
|
27 |
+
\ and intelligence. With that in mind, we’ve continued to push the boundaries\
|
28 |
+
\ of innovation by expanding our expertise- and intelligence-backed solutions\
|
29 |
+
\ to stay ahead of market needs. Each is considered the gold standard in its respective\
|
30 |
+
\ space. These solutions include Mandiant Consulting, Mandiant Managed Defense,\
|
31 |
+
\ FireEye Threat Intelligence, FireEye Expertise On Demand, and Verodin Security\
|
32 |
+
\ Validation. Now, to streamline options and simplify the process of identifying\
|
33 |
+
\ solutions our customers need to proactively combat cyber threats, we are renaming\
|
34 |
+
\ our expertise- and intelligence-backed solutions to Mandiant, under the collective\
|
35 |
+
\ term Mandiant Solutions. The renaming of our solutions does not change pricing,\
|
36 |
+
\ content, or delivery today. Current subscribers of these services will continue\
|
37 |
+
\ to receive the same unparalleled frontline expertise they have come to rely\
|
38 |
+
\ on. As we move forward, the goal of Mandiant Solutions is to deliver synergies\
|
39 |
+
\ between these solutions to help customers improve security effectiveness by\
|
40 |
+
\ automating the security operations center and augmenting their security teams\
|
41 |
+
\ with Mandiant expertise and intelligence, regardless of the SIEM and security\
|
42 |
+
\ technology they have deployed. Our Mandiant Solutions portfolio will include:\
|
43 |
+
\ Each of these offerings combines our technologies, intelligence and expertise,\
|
44 |
+
\ helping organizations meet evolving security challenges. Customers can be confident\
|
45 |
+
\ that Mandiant Solutions are backed by the industry’s best expertise and informed\
|
46 |
+
\ by the best threat intelligence available today. For example, following the\
|
47 |
+
\ acquisition of Verodin last year, we’ve been actively integrating our market-leading\
|
48 |
+
\ threat intelligence with the industry’s most comprehensive security validation\
|
49 |
+
\ platform, now known as Mandiant Security Validation. This represents a significant\
|
50 |
+
\ benefit to our customers who can test and validate their organization’s readiness\
|
51 |
+
\ against the very latest techniques employed by today’s threat actors. Of course,\
|
52 |
+
\ our suite of enterprise solutions (FireEye Helix, Endpoint, Network, and Email\
|
53 |
+
\ Security) also benefits from and enhances this wealth of frontline expertise\
|
54 |
+
\ through our unique Innovation Cycle. It ensures that our products and services\
|
55 |
+
\ are able to learn and adapt to new threats faster and better than anyone. As\
|
56 |
+
\ we look to the future, our vision is to continue to integrate these capabilities\
|
57 |
+
\ through a seamless, modern platform that accelerates our customers’ ability\
|
58 |
+
\ to measurably improve the people, processes, and technology they need to protect\
|
59 |
+
\ their critical assets. Stay tuned for more updates as we rollout our renaming!\t\
|
60 |
+
\tSince 2004, the Mandiant name has represented unparalleled security expertise,\
|
61 |
+
\ earning the trust of cyber security professionals and company executives across\
|
62 |
+
\ the world. By joining this unparalleled frontline experience with our industry\
|
63 |
+
\ leading, nation-state grade threat intelligence and innovative technology, we\
|
64 |
+
\ have ensured that FireEye knows more about current advanced threats than anyone.Today\
|
65 |
+
\ the world looks a lot different than it did in 2004. The cyber security industry\
|
66 |
+
\ has expanded (some might say exploded), but through all this change, one thing\
|
67 |
+
\ has remained the same: there is no substitute for world-class expertise and\
|
68 |
+
\ intelligence.With that in mind, we’ve continued to push the boundaries of innovation\
|
69 |
+
\ by expanding our expertise- and intelligence-backed solutions to stay ahead\
|
70 |
+
\ of market needs. Each is considered the gold standard in its respective space.\
|
71 |
+
\ These solutions include Mandiant Consulting, Mandiant Managed Defense, FireEye\
|
72 |
+
\ Threat Intelligence, FireEye Expertise On Demand, and Verodin Security Validation.Now,\
|
73 |
+
\ to streamline options and simplify the process of identifying solutions our\
|
74 |
+
\ customers need to proactively combat cyber threats, we are renaming our expertise-\
|
75 |
+
\ and intelligence-backed solutions to Mandiant, under the collective term Mandiant\
|
76 |
+
\ Solutions.The renaming of our solutions does not change pricing, content, or\
|
77 |
+
\ delivery today. Current subscribers of these services will continue to receive\
|
78 |
+
\ the same unparalleled frontline expertise they have come to rely on.As we move\
|
79 |
+
\ forward, the goal of Mandiant Solutions is to deliver synergies between these\
|
80 |
+
\ solutions to help customers improve security effectiveness by automating the\
|
81 |
+
\ security operations center and augmenting their security teams with Mandiant\
|
82 |
+
\ expertise and intelligence, regardless of the SIEM and security technology they\
|
83 |
+
\ have deployed. Our Mandiant Solutions portfolio will include:Mandiant ConsultingMandiant\
|
84 |
+
\ Managed DefenseMandiant Threat IntelligenceMandiant Expertise On DemandMandiant\
|
85 |
+
\ Security Validation (formerly Verodin)Each of these offerings combines our technologies,\
|
86 |
+
\ intelligence and expertise, helping organizations meet evolving security challenges.\
|
87 |
+
\ Customers can be confident that Mandiant Solutions are backed by the industry’s\
|
88 |
+
\ best expertise and informed by the best threat intelligence available today. For\
|
89 |
+
\ example, following the acquisition of Verodin last year, we’ve been actively\
|
90 |
+
\ integrating our market-leading threat intelligence with the industry’s most\
|
91 |
+
\ comprehensive security validation platform, now known as Mandiant Security Validation.\
|
92 |
+
\ This represents a significant benefit to our customers who can test and validate\
|
93 |
+
\ their organization’s readiness against the very latest techniques employed by\
|
94 |
+
\ today’s threat actors.Of course, our suite of enterprise solutions (FireEye\
|
95 |
+
\ Helix, Endpoint, Network, and Email Security) also benefits from and enhances\
|
96 |
+
\ this wealth of frontline expertise through our unique Innovation Cycle. It ensures\
|
97 |
+
\ that our products and services are able to learn and adapt to new threats faster\
|
98 |
+
\ and better than anyone. As we look to the future, our vision is to continue\
|
99 |
+
\ to integrate these capabilities through a seamless, modern platform that accelerates\
|
100 |
+
\ our customers’ ability to measurably improve the people, processes, and technology\
|
101 |
+
\ they need to protect their critical assets. Stay tuned for more updates as we\
|
102 |
+
\ rollout our renaming!"
|
103 |
+
metrics:
|
104 |
+
- accuracy
|
105 |
+
pipeline_tag: text-classification
|
106 |
+
library_name: setfit
|
107 |
+
inference: true
|
108 |
+
base_model: BAAI/bge-base-en-v1.5
|
109 |
+
---
|
110 |
+
|
111 |
+
# SetFit with BAAI/bge-base-en-v1.5
|
112 |
+
|
113 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
114 |
+
|
115 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
116 |
+
|
117 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
118 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
119 |
+
|
120 |
+
## Model Details
|
121 |
+
|
122 |
+
### Model Description
|
123 |
+
- **Model Type:** SetFit
|
124 |
+
- **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
|
125 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
126 |
+
- **Maximum Sequence Length:** 512 tokens
|
127 |
+
- **Number of Classes:** 2 classes
|
128 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
129 |
+
<!-- - **Language:** Unknown -->
|
130 |
+
<!-- - **License:** Unknown -->
|
131 |
+
|
132 |
+
### Model Sources
|
133 |
+
|
134 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
135 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
136 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
137 |
+
|
138 |
+
### Model Labels
|
139 |
+
| Label | Examples |
|
140 |
+
|:-------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
141 |
+
| cybersec | <ul><li>"cracking this password?. http://postimg.org/image/mi3xit477/\nit's Gargoyle Router Management Utility\ni'm a pre-beginner in cracking, i setted this up in my router, but i don't want to press the reset button, it took me a few weeks to do it, so i don't wanna re-install the firmware, but i forgot the password.....\ni have unlimited times of enter times, it's a 192.168.2.1\nhow can i crack it? i don't think it's encrypted though..."</li><li>'How can someone prevent a sybil attack when connecting through TOR?. <p>As I understand it, running sybil BTC nodes through an anonymous network like TOR is much less expensive than in clearnet. This makes it possible that one could be connected to a majority of nodes controlled by the same entity, right?</p>\n\n<p>Is there any way to limit exposure to this when connection through TOR?</p>\n\n<p>( I am asking for a friend :P )</p>\n'</li><li>'Added gigabit qos switch at workstation to work around 10/100 pass though in Cisco IP phone. Widows says the LAN connection is 1Gbps, but there is a cat5, not 5e going to the machine, am I really getting gigabit?. Windows 7.\nLong story short, the network connection to our PCs was running through our Cisco IP phones, which only supported 10/100. Per my IT guy, everything else on our network, the switches etc. can support gigabit, the phone is the choke point. To workaround, I got a 5 port gigabit switch, and put the phone on the high priority qos port. Under the LAN connection in control panel, it went from 100Mbps to 1Gbps.\nThe reason I am skeptical is that the ethernet cable from the switch to the PC is cat5, not 5e. My understanding is it needs to be 5e. Since there are 3 cables (wall to switch, switch to phone, switch to pc) per machine, I would rather not replace every cable on 17 machines.\nSo, if Windows says gigabit, is that all there is to it? Or should I run some type of diagnostic?\nLonger question, we have 20ish IP phones, and a server, sharing modestly sized documents, and some server-centric ERP type software. Do I even need the Gigabit speed? Some users I have switched are noticing some improvement, but we are not transferring huge files across the network regularly, so it may just seem anecdotally faster to them. How can I tell if I really need the extra bandwidth, and what I am using?\n\nI feel like a total idiot here, be gentle...\n\nThanks!'</li></ul> |
|
142 |
+
| non-cybersec | <ul><li>'Tex-shell in AUCTeX. <p>Whenever I compile a file in AUCTeX (e.g. <code>C-c</code> <code>C-c</code> and then choosing an option) , it creates a buffer <code>tex-shell</code> where I can see the output of the compilation command. Once the compilation finishes this shell buffer stays open. What is the right way to close it? </p>\n\n<p>Besides showing me the compilation output, what else can I use it for?</p>\n'</li><li>'Inserting a Creative Commons Licence into a LaTeX document. <p>I\'d like to insert a CC license on a manuscript (a book or report). I\'ve seen the page for downloading the <a href="http://creativecommons.org/about/downloads/" rel="noreferrer">CC icons</a>, and also some questions asked in the forum <a href="https://tex.stackexchange.com/questions/20308/creative-commons-logo">CC logo</a> and <a href="https://tex.stackexchange.com/questions/1725/how-do-i-generate-creative-commons-license-information">Generate CC information</a>. </p>\n\n<p>However, I do not get how to create the actual thing!</p>\n\n<p><strong>Q:</strong> Can you please provide an example of a license info page (<em>MWE</em>)? That would be really helpful!</p>\n'</li><li>"Hey Reddit! We're Tritonal, and we just released our new U&Me album. Ask us anything!!. Yooo! What's up!? It's Dave & Chad of Tritonal, and we've just released our newest album, U&ME, available everywhere now! We're here to answer all of YOUR questions. Let's get this thing started!\n\nASK US ANYTHING! <3\n\nOur new album U&Me - https://enhanced.ffm.to/umealbum\nOur tour dates - http://tritonalmusic.com/shows\n\nProof: https://i.imgur.com/6cxJ9eU.jpg"</li></ul> |
|
143 |
+
|
144 |
+
## Uses
|
145 |
+
|
146 |
+
### Direct Use for Inference
|
147 |
+
|
148 |
+
First install the SetFit library:
|
149 |
+
|
150 |
+
```bash
|
151 |
+
pip install setfit
|
152 |
+
```
|
153 |
+
|
154 |
+
Then you can load this model and run inference.
|
155 |
+
|
156 |
+
```python
|
157 |
+
from setfit import SetFitModel
|
158 |
+
|
159 |
+
# Download from the 🤗 Hub
|
160 |
+
model = SetFitModel.from_pretrained("naufalso/setfit-ctc-bge-base-en-v1.5")
|
161 |
+
# Run inference
|
162 |
+
preds = model("The salvation of the soul in plain English: the world revolves around me.")
|
163 |
+
```
|
164 |
+
|
165 |
+
<!--
|
166 |
+
### Downstream Use
|
167 |
+
|
168 |
+
*List how someone could finetune this model on their own dataset.*
|
169 |
+
-->
|
170 |
+
|
171 |
+
<!--
|
172 |
+
### Out-of-Scope Use
|
173 |
+
|
174 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
175 |
+
-->
|
176 |
+
|
177 |
+
<!--
|
178 |
+
## Bias, Risks and Limitations
|
179 |
+
|
180 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
181 |
+
-->
|
182 |
+
|
183 |
+
<!--
|
184 |
+
### Recommendations
|
185 |
+
|
186 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
187 |
+
-->
|
188 |
+
|
189 |
+
## Training Details
|
190 |
+
|
191 |
+
### Training Set Metrics
|
192 |
+
| Training set | Min | Median | Max |
|
193 |
+
|:-------------|:----|:--------|:------|
|
194 |
+
| Word count | 2 | 309.552 | 20280 |
|
195 |
+
|
196 |
+
| Label | Training Sample Count |
|
197 |
+
|:-------------|:----------------------|
|
198 |
+
| non-cybersec | 1000 |
|
199 |
+
| cybersec | 1000 |
|
200 |
+
|
201 |
+
### Training Hyperparameters
|
202 |
+
- batch_size: (32, 32)
|
203 |
+
- num_epochs: (1, 1)
|
204 |
+
- max_steps: -1
|
205 |
+
- sampling_strategy: oversampling
|
206 |
+
- body_learning_rate: (2e-05, 1e-05)
|
207 |
+
- head_learning_rate: 0.01
|
208 |
+
- loss: CosineSimilarityLoss
|
209 |
+
- distance_metric: cosine_distance
|
210 |
+
- margin: 0.25
|
211 |
+
- end_to_end: False
|
212 |
+
- use_amp: False
|
213 |
+
- warmup_proportion: 0.1
|
214 |
+
- l2_weight: 0.01
|
215 |
+
- seed: 42
|
216 |
+
- eval_max_steps: -1
|
217 |
+
- load_best_model_at_end: False
|
218 |
+
|
219 |
+
### Training Results
|
220 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
221 |
+
|:------:|:-----:|:-------------:|:---------------:|
|
222 |
+
| 0.0000 | 1 | 0.2527 | - |
|
223 |
+
| 0.0008 | 50 | 0.2398 | - |
|
224 |
+
| 0.0016 | 100 | 0.2476 | - |
|
225 |
+
| 0.0024 | 150 | 0.2407 | - |
|
226 |
+
| 0.0032 | 200 | 0.2448 | - |
|
227 |
+
| 0.0040 | 250 | 0.241 | - |
|
228 |
+
| 0.0048 | 300 | 0.2381 | - |
|
229 |
+
| 0.0056 | 350 | 0.2345 | - |
|
230 |
+
| 0.0064 | 400 | 0.2344 | - |
|
231 |
+
| 0.0072 | 450 | 0.2284 | - |
|
232 |
+
| 0.0080 | 500 | 0.2232 | - |
|
233 |
+
| 0.0088 | 550 | 0.2167 | - |
|
234 |
+
| 0.0096 | 600 | 0.2082 | - |
|
235 |
+
| 0.0104 | 650 | 0.193 | - |
|
236 |
+
| 0.0112 | 700 | 0.163 | - |
|
237 |
+
| 0.0120 | 750 | 0.138 | - |
|
238 |
+
| 0.0128 | 800 | 0.1136 | - |
|
239 |
+
| 0.0136 | 850 | 0.0934 | - |
|
240 |
+
| 0.0144 | 900 | 0.0743 | - |
|
241 |
+
| 0.0152 | 950 | 0.0619 | - |
|
242 |
+
| 0.0160 | 1000 | 0.0455 | - |
|
243 |
+
| 0.0168 | 1050 | 0.0415 | - |
|
244 |
+
| 0.0176 | 1100 | 0.027 | - |
|
245 |
+
| 0.0184 | 1150 | 0.0276 | - |
|
246 |
+
| 0.0192 | 1200 | 0.0235 | - |
|
247 |
+
| 0.0200 | 1250 | 0.0183 | - |
|
248 |
+
| 0.0208 | 1300 | 0.0193 | - |
|
249 |
+
| 0.0216 | 1350 | 0.0161 | - |
|
250 |
+
| 0.0224 | 1400 | 0.0143 | - |
|
251 |
+
| 0.0232 | 1450 | 0.0134 | - |
|
252 |
+
| 0.0240 | 1500 | 0.0146 | - |
|
253 |
+
| 0.0248 | 1550 | 0.0152 | - |
|
254 |
+
| 0.0256 | 1600 | 0.0157 | - |
|
255 |
+
| 0.0264 | 1650 | 0.0138 | - |
|
256 |
+
| 0.0272 | 1700 | 0.0101 | - |
|
257 |
+
| 0.0280 | 1750 | 0.0089 | - |
|
258 |
+
| 0.0288 | 1800 | 0.0109 | - |
|
259 |
+
| 0.0296 | 1850 | 0.0122 | - |
|
260 |
+
| 0.0304 | 1900 | 0.0056 | - |
|
261 |
+
| 0.0312 | 1950 | 0.0094 | - |
|
262 |
+
| 0.0320 | 2000 | 0.0105 | - |
|
263 |
+
| 0.0328 | 2050 | 0.0101 | - |
|
264 |
+
| 0.0336 | 2100 | 0.0087 | - |
|
265 |
+
| 0.0344 | 2150 | 0.0089 | - |
|
266 |
+
| 0.0352 | 2200 | 0.0079 | - |
|
267 |
+
| 0.0360 | 2250 | 0.0091 | - |
|
268 |
+
| 0.0368 | 2300 | 0.0063 | - |
|
269 |
+
| 0.0376 | 2350 | 0.005 | - |
|
270 |
+
| 0.0384 | 2400 | 0.0083 | - |
|
271 |
+
| 0.0392 | 2450 | 0.0066 | - |
|
272 |
+
| 0.0400 | 2500 | 0.007 | - |
|
273 |
+
| 0.0408 | 2550 | 0.0049 | - |
|
274 |
+
| 0.0416 | 2600 | 0.0037 | - |
|
275 |
+
| 0.0424 | 2650 | 0.006 | - |
|
276 |
+
| 0.0432 | 2700 | 0.0063 | - |
|
277 |
+
| 0.0440 | 2750 | 0.0047 | - |
|
278 |
+
| 0.0448 | 2800 | 0.0062 | - |
|
279 |
+
| 0.0456 | 2850 | 0.0029 | - |
|
280 |
+
| 0.0464 | 2900 | 0.0038 | - |
|
281 |
+
| 0.0472 | 2950 | 0.0025 | - |
|
282 |
+
| 0.0480 | 3000 | 0.0021 | - |
|
283 |
+
| 0.0488 | 3050 | 0.0017 | - |
|
284 |
+
| 0.0496 | 3100 | 0.0041 | - |
|
285 |
+
| 0.0503 | 3150 | 0.0015 | - |
|
286 |
+
| 0.0511 | 3200 | 0.004 | - |
|
287 |
+
| 0.0519 | 3250 | 0.0019 | - |
|
288 |
+
| 0.0527 | 3300 | 0.005 | - |
|
289 |
+
| 0.0535 | 3350 | 0.0016 | - |
|
290 |
+
| 0.0543 | 3400 | 0.0037 | - |
|
291 |
+
| 0.0551 | 3450 | 0.0031 | - |
|
292 |
+
| 0.0559 | 3500 | 0.0024 | - |
|
293 |
+
| 0.0567 | 3550 | 0.0019 | - |
|
294 |
+
| 0.0575 | 3600 | 0.0036 | - |
|
295 |
+
| 0.0583 | 3650 | 0.0058 | - |
|
296 |
+
| 0.0591 | 3700 | 0.0024 | - |
|
297 |
+
| 0.0599 | 3750 | 0.0021 | - |
|
298 |
+
| 0.0607 | 3800 | 0.0015 | - |
|
299 |
+
| 0.0615 | 3850 | 0.0015 | - |
|
300 |
+
| 0.0623 | 3900 | 0.0016 | - |
|
301 |
+
| 0.0631 | 3950 | 0.0009 | - |
|
302 |
+
| 0.0639 | 4000 | 0.0014 | - |
|
303 |
+
| 0.0647 | 4050 | 0.0014 | - |
|
304 |
+
| 0.0655 | 4100 | 0.0021 | - |
|
305 |
+
| 0.0663 | 4150 | 0.0008 | - |
|
306 |
+
| 0.0671 | 4200 | 0.0031 | - |
|
307 |
+
| 0.0679 | 4250 | 0.0008 | - |
|
308 |
+
| 0.0687 | 4300 | 0.0025 | - |
|
309 |
+
| 0.0695 | 4350 | 0.0028 | - |
|
310 |
+
| 0.0703 | 4400 | 0.0025 | - |
|
311 |
+
| 0.0711 | 4450 | 0.0007 | - |
|
312 |
+
| 0.0719 | 4500 | 0.0018 | - |
|
313 |
+
| 0.0727 | 4550 | 0.0012 | - |
|
314 |
+
| 0.0735 | 4600 | 0.0012 | - |
|
315 |
+
| 0.0743 | 4650 | 0.0006 | - |
|
316 |
+
| 0.0751 | 4700 | 0.0006 | - |
|
317 |
+
| 0.0759 | 4750 | 0.0031 | - |
|
318 |
+
| 0.0767 | 4800 | 0.0017 | - |
|
319 |
+
| 0.0775 | 4850 | 0.0007 | - |
|
320 |
+
| 0.0783 | 4900 | 0.0011 | - |
|
321 |
+
| 0.0791 | 4950 | 0.0006 | - |
|
322 |
+
| 0.0799 | 5000 | 0.0006 | - |
|
323 |
+
| 0.0807 | 5050 | 0.0005 | - |
|
324 |
+
| 0.0815 | 5100 | 0.0005 | - |
|
325 |
+
| 0.0823 | 5150 | 0.0005 | - |
|
326 |
+
| 0.0831 | 5200 | 0.0005 | - |
|
327 |
+
| 0.0839 | 5250 | 0.0005 | - |
|
328 |
+
| 0.0847 | 5300 | 0.0005 | - |
|
329 |
+
| 0.0855 | 5350 | 0.0005 | - |
|
330 |
+
| 0.0863 | 5400 | 0.0005 | - |
|
331 |
+
| 0.0871 | 5450 | 0.0005 | - |
|
332 |
+
| 0.0879 | 5500 | 0.0004 | - |
|
333 |
+
| 0.0887 | 5550 | 0.0005 | - |
|
334 |
+
| 0.0895 | 5600 | 0.0004 | - |
|
335 |
+
| 0.0903 | 5650 | 0.0004 | - |
|
336 |
+
| 0.0911 | 5700 | 0.0004 | - |
|
337 |
+
| 0.0919 | 5750 | 0.0004 | - |
|
338 |
+
| 0.0927 | 5800 | 0.0004 | - |
|
339 |
+
| 0.0935 | 5850 | 0.0035 | - |
|
340 |
+
| 0.0943 | 5900 | 0.0112 | - |
|
341 |
+
| 0.0951 | 5950 | 0.0054 | - |
|
342 |
+
| 0.0959 | 6000 | 0.0058 | - |
|
343 |
+
| 0.0967 | 6050 | 0.0027 | - |
|
344 |
+
| 0.0975 | 6100 | 0.0051 | - |
|
345 |
+
| 0.0983 | 6150 | 0.0038 | - |
|
346 |
+
| 0.0991 | 6200 | 0.0031 | - |
|
347 |
+
| 0.0999 | 6250 | 0.0038 | - |
|
348 |
+
| 0.1007 | 6300 | 0.0021 | - |
|
349 |
+
| 0.1015 | 6350 | 0.0029 | - |
|
350 |
+
| 0.1023 | 6400 | 0.0018 | - |
|
351 |
+
| 0.1031 | 6450 | 0.0035 | - |
|
352 |
+
| 0.1039 | 6500 | 0.0017 | - |
|
353 |
+
| 0.1047 | 6550 | 0.0026 | - |
|
354 |
+
| 0.1055 | 6600 | 0.0016 | - |
|
355 |
+
| 0.1063 | 6650 | 0.0016 | - |
|
356 |
+
| 0.1071 | 6700 | 0.0004 | - |
|
357 |
+
| 0.1079 | 6750 | 0.001 | - |
|
358 |
+
| 0.1087 | 6800 | 0.0028 | - |
|
359 |
+
| 0.1095 | 6850 | 0.001 | - |
|
360 |
+
| 0.1103 | 6900 | 0.0003 | - |
|
361 |
+
| 0.1111 | 6950 | 0.001 | - |
|
362 |
+
| 0.1119 | 7000 | 0.0016 | - |
|
363 |
+
| 0.1127 | 7050 | 0.0003 | - |
|
364 |
+
| 0.1135 | 7100 | 0.0022 | - |
|
365 |
+
| 0.1143 | 7150 | 0.0022 | - |
|
366 |
+
| 0.1151 | 7200 | 0.0016 | - |
|
367 |
+
| 0.1159 | 7250 | 0.0007 | - |
|
368 |
+
| 0.1167 | 7300 | 0.0003 | - |
|
369 |
+
| 0.1175 | 7350 | 0.0006 | - |
|
370 |
+
| 0.1183 | 7400 | 0.0026 | - |
|
371 |
+
| 0.1191 | 7450 | 0.0004 | - |
|
372 |
+
| 0.1199 | 7500 | 0.0008 | - |
|
373 |
+
| 0.1207 | 7550 | 0.0004 | - |
|
374 |
+
| 0.1215 | 7600 | 0.0003 | - |
|
375 |
+
| 0.1223 | 7650 | 0.0004 | - |
|
376 |
+
| 0.1231 | 7700 | 0.0023 | - |
|
377 |
+
| 0.1239 | 7750 | 0.0004 | - |
|
378 |
+
| 0.1247 | 7800 | 0.0005 | - |
|
379 |
+
| 0.1255 | 7850 | 0.0005 | - |
|
380 |
+
| 0.1263 | 7900 | 0.0016 | - |
|
381 |
+
| 0.1271 | 7950 | 0.0005 | - |
|
382 |
+
| 0.1279 | 8000 | 0.0004 | - |
|
383 |
+
| 0.1287 | 8050 | 0.0003 | - |
|
384 |
+
| 0.1295 | 8100 | 0.0014 | - |
|
385 |
+
| 0.1303 | 8150 | 0.0052 | - |
|
386 |
+
| 0.1311 | 8200 | 0.005 | - |
|
387 |
+
| 0.1319 | 8250 | 0.0051 | - |
|
388 |
+
| 0.1327 | 8300 | 0.0009 | - |
|
389 |
+
| 0.1335 | 8350 | 0.0003 | - |
|
390 |
+
| 0.1343 | 8400 | 0.0004 | - |
|
391 |
+
| 0.1351 | 8450 | 0.0003 | - |
|
392 |
+
| 0.1359 | 8500 | 0.0003 | - |
|
393 |
+
| 0.1367 | 8550 | 0.0009 | - |
|
394 |
+
| 0.1375 | 8600 | 0.0003 | - |
|
395 |
+
| 0.1383 | 8650 | 0.0003 | - |
|
396 |
+
| 0.1391 | 8700 | 0.0003 | - |
|
397 |
+
| 0.1399 | 8750 | 0.0009 | - |
|
398 |
+
| 0.1407 | 8800 | 0.0012 | - |
|
399 |
+
| 0.1415 | 8850 | 0.0009 | - |
|
400 |
+
| 0.1423 | 8900 | 0.0003 | - |
|
401 |
+
| 0.1431 | 8950 | 0.0002 | - |
|
402 |
+
| 0.1439 | 9000 | 0.0002 | - |
|
403 |
+
| 0.1447 | 9050 | 0.0002 | - |
|
404 |
+
| 0.1455 | 9100 | 0.0002 | - |
|
405 |
+
| 0.1463 | 9150 | 0.0002 | - |
|
406 |
+
| 0.1471 | 9200 | 0.0002 | - |
|
407 |
+
| 0.1479 | 9250 | 0.0003 | - |
|
408 |
+
| 0.1487 | 9300 | 0.0002 | - |
|
409 |
+
| 0.1494 | 9350 | 0.0002 | - |
|
410 |
+
| 0.1502 | 9400 | 0.0002 | - |
|
411 |
+
| 0.1510 | 9450 | 0.0002 | - |
|
412 |
+
| 0.1518 | 9500 | 0.0002 | - |
|
413 |
+
| 0.1526 | 9550 | 0.0002 | - |
|
414 |
+
| 0.1534 | 9600 | 0.0002 | - |
|
415 |
+
| 0.1542 | 9650 | 0.0002 | - |
|
416 |
+
| 0.1550 | 9700 | 0.0002 | - |
|
417 |
+
| 0.1558 | 9750 | 0.0002 | - |
|
418 |
+
| 0.1566 | 9800 | 0.0002 | - |
|
419 |
+
| 0.1574 | 9850 | 0.0002 | - |
|
420 |
+
| 0.1582 | 9900 | 0.0002 | - |
|
421 |
+
| 0.1590 | 9950 | 0.0002 | - |
|
422 |
+
| 0.1598 | 10000 | 0.0002 | - |
|
423 |
+
| 0.1606 | 10050 | 0.0002 | - |
|
424 |
+
| 0.1614 | 10100 | 0.0002 | - |
|
425 |
+
| 0.1622 | 10150 | 0.0002 | - |
|
426 |
+
| 0.1630 | 10200 | 0.0002 | - |
|
427 |
+
| 0.1638 | 10250 | 0.0002 | - |
|
428 |
+
| 0.1646 | 10300 | 0.0002 | - |
|
429 |
+
| 0.1654 | 10350 | 0.0002 | - |
|
430 |
+
| 0.1662 | 10400 | 0.0002 | - |
|
431 |
+
| 0.1670 | 10450 | 0.0002 | - |
|
432 |
+
| 0.1678 | 10500 | 0.0002 | - |
|
433 |
+
| 0.1686 | 10550 | 0.0002 | - |
|
434 |
+
| 0.1694 | 10600 | 0.0002 | - |
|
435 |
+
| 0.1702 | 10650 | 0.0002 | - |
|
436 |
+
| 0.1710 | 10700 | 0.0002 | - |
|
437 |
+
| 0.1718 | 10750 | 0.0002 | - |
|
438 |
+
| 0.1726 | 10800 | 0.0002 | - |
|
439 |
+
| 0.1734 | 10850 | 0.0002 | - |
|
440 |
+
| 0.1742 | 10900 | 0.0002 | - |
|
441 |
+
| 0.1750 | 10950 | 0.0002 | - |
|
442 |
+
| 0.1758 | 11000 | 0.0002 | - |
|
443 |
+
| 0.1766 | 11050 | 0.0002 | - |
|
444 |
+
| 0.1774 | 11100 | 0.0002 | - |
|
445 |
+
| 0.1782 | 11150 | 0.0002 | - |
|
446 |
+
| 0.1790 | 11200 | 0.0002 | - |
|
447 |
+
| 0.1798 | 11250 | 0.0002 | - |
|
448 |
+
| 0.1806 | 11300 | 0.0002 | - |
|
449 |
+
| 0.1814 | 11350 | 0.0002 | - |
|
450 |
+
| 0.1822 | 11400 | 0.0002 | - |
|
451 |
+
| 0.1830 | 11450 | 0.0002 | - |
|
452 |
+
| 0.1838 | 11500 | 0.0002 | - |
|
453 |
+
| 0.1846 | 11550 | 0.0002 | - |
|
454 |
+
| 0.1854 | 11600 | 0.0002 | - |
|
455 |
+
| 0.1862 | 11650 | 0.0002 | - |
|
456 |
+
| 0.1870 | 11700 | 0.0002 | - |
|
457 |
+
| 0.1878 | 11750 | 0.0002 | - |
|
458 |
+
| 0.1886 | 11800 | 0.0001 | - |
|
459 |
+
| 0.1894 | 11850 | 0.0002 | - |
|
460 |
+
| 0.1902 | 11900 | 0.0002 | - |
|
461 |
+
| 0.1910 | 11950 | 0.0001 | - |
|
462 |
+
| 0.1918 | 12000 | 0.0001 | - |
|
463 |
+
| 0.1926 | 12050 | 0.0001 | - |
|
464 |
+
| 0.1934 | 12100 | 0.0001 | - |
|
465 |
+
| 0.1942 | 12150 | 0.0001 | - |
|
466 |
+
| 0.1950 | 12200 | 0.0001 | - |
|
467 |
+
| 0.1958 | 12250 | 0.0001 | - |
|
468 |
+
| 0.1966 | 12300 | 0.0001 | - |
|
469 |
+
| 0.1974 | 12350 | 0.0001 | - |
|
470 |
+
| 0.1982 | 12400 | 0.0001 | - |
|
471 |
+
| 0.1990 | 12450 | 0.0001 | - |
|
472 |
+
| 0.1998 | 12500 | 0.0001 | - |
|
473 |
+
| 0.2006 | 12550 | 0.0001 | - |
|
474 |
+
| 0.2014 | 12600 | 0.0001 | - |
|
475 |
+
| 0.2022 | 12650 | 0.0001 | - |
|
476 |
+
| 0.2030 | 12700 | 0.0001 | - |
|
477 |
+
| 0.2038 | 12750 | 0.0001 | - |
|
478 |
+
| 0.2046 | 12800 | 0.0001 | - |
|
479 |
+
| 0.2054 | 12850 | 0.0001 | - |
|
480 |
+
| 0.2062 | 12900 | 0.0001 | - |
|
481 |
+
| 0.2070 | 12950 | 0.0001 | - |
|
482 |
+
| 0.2078 | 13000 | 0.0001 | - |
|
483 |
+
| 0.2086 | 13050 | 0.0001 | - |
|
484 |
+
| 0.2094 | 13100 | 0.0001 | - |
|
485 |
+
| 0.2102 | 13150 | 0.0001 | - |
|
486 |
+
| 0.2110 | 13200 | 0.0001 | - |
|
487 |
+
| 0.2118 | 13250 | 0.0001 | - |
|
488 |
+
| 0.2126 | 13300 | 0.0001 | - |
|
489 |
+
| 0.2134 | 13350 | 0.0001 | - |
|
490 |
+
| 0.2142 | 13400 | 0.0001 | - |
|
491 |
+
| 0.2150 | 13450 | 0.0001 | - |
|
492 |
+
| 0.2158 | 13500 | 0.0001 | - |
|
493 |
+
| 0.2166 | 13550 | 0.0001 | - |
|
494 |
+
| 0.2174 | 13600 | 0.0001 | - |
|
495 |
+
| 0.2182 | 13650 | 0.0001 | - |
|
496 |
+
| 0.2190 | 13700 | 0.0001 | - |
|
497 |
+
| 0.2198 | 13750 | 0.0001 | - |
|
498 |
+
| 0.2206 | 13800 | 0.0001 | - |
|
499 |
+
| 0.2214 | 13850 | 0.0001 | - |
|
500 |
+
| 0.2222 | 13900 | 0.0001 | - |
|
501 |
+
| 0.2230 | 13950 | 0.0001 | - |
|
502 |
+
| 0.2238 | 14000 | 0.0001 | - |
|
503 |
+
| 0.2246 | 14050 | 0.0001 | - |
|
504 |
+
| 0.2254 | 14100 | 0.0001 | - |
|
505 |
+
| 0.2262 | 14150 | 0.0001 | - |
|
506 |
+
| 0.2270 | 14200 | 0.0001 | - |
|
507 |
+
| 0.2278 | 14250 | 0.0001 | - |
|
508 |
+
| 0.2286 | 14300 | 0.0001 | - |
|
509 |
+
| 0.2294 | 14350 | 0.0001 | - |
|
510 |
+
| 0.2302 | 14400 | 0.0001 | - |
|
511 |
+
| 0.2310 | 14450 | 0.0001 | - |
|
512 |
+
| 0.2318 | 14500 | 0.0001 | - |
|
513 |
+
| 0.2326 | 14550 | 0.0001 | - |
|
514 |
+
| 0.2334 | 14600 | 0.0001 | - |
|
515 |
+
| 0.2342 | 14650 | 0.0001 | - |
|
516 |
+
| 0.2350 | 14700 | 0.0001 | - |
|
517 |
+
| 0.2358 | 14750 | 0.0001 | - |
|
518 |
+
| 0.2366 | 14800 | 0.0001 | - |
|
519 |
+
| 0.2374 | 14850 | 0.0001 | - |
|
520 |
+
| 0.2382 | 14900 | 0.0001 | - |
|
521 |
+
| 0.2390 | 14950 | 0.0001 | - |
|
522 |
+
| 0.2398 | 15000 | 0.0001 | - |
|
523 |
+
| 0.2406 | 15050 | 0.0001 | - |
|
524 |
+
| 0.2414 | 15100 | 0.0001 | - |
|
525 |
+
| 0.2422 | 15150 | 0.0001 | - |
|
526 |
+
| 0.2430 | 15200 | 0.0001 | - |
|
527 |
+
| 0.2438 | 15250 | 0.0001 | - |
|
528 |
+
| 0.2446 | 15300 | 0.0001 | - |
|
529 |
+
| 0.2454 | 15350 | 0.0001 | - |
|
530 |
+
| 0.2462 | 15400 | 0.0001 | - |
|
531 |
+
| 0.2470 | 15450 | 0.0001 | - |
|
532 |
+
| 0.2478 | 15500 | 0.0001 | - |
|
533 |
+
| 0.2485 | 15550 | 0.0001 | - |
|
534 |
+
| 0.2493 | 15600 | 0.0001 | - |
|
535 |
+
| 0.2501 | 15650 | 0.0001 | - |
|
536 |
+
| 0.2509 | 15700 | 0.0001 | - |
|
537 |
+
| 0.2517 | 15750 | 0.0001 | - |
|
538 |
+
| 0.2525 | 15800 | 0.0001 | - |
|
539 |
+
| 0.2533 | 15850 | 0.0001 | - |
|
540 |
+
| 0.2541 | 15900 | 0.0001 | - |
|
541 |
+
| 0.2549 | 15950 | 0.0001 | - |
|
542 |
+
| 0.2557 | 16000 | 0.0001 | - |
|
543 |
+
| 0.2565 | 16050 | 0.0001 | - |
|
544 |
+
| 0.2573 | 16100 | 0.0001 | - |
|
545 |
+
| 0.2581 | 16150 | 0.0001 | - |
|
546 |
+
| 0.2589 | 16200 | 0.0001 | - |
|
547 |
+
| 0.2597 | 16250 | 0.0001 | - |
|
548 |
+
| 0.2605 | 16300 | 0.0001 | - |
|
549 |
+
| 0.2613 | 16350 | 0.0001 | - |
|
550 |
+
| 0.2621 | 16400 | 0.0001 | - |
|
551 |
+
| 0.2629 | 16450 | 0.0011 | - |
|
552 |
+
| 0.2637 | 16500 | 0.0011 | - |
|
553 |
+
| 0.2645 | 16550 | 0.0022 | - |
|
554 |
+
| 0.2653 | 16600 | 0.0055 | - |
|
555 |
+
| 0.2661 | 16650 | 0.0012 | - |
|
556 |
+
| 0.2669 | 16700 | 0.0023 | - |
|
557 |
+
| 0.2677 | 16750 | 0.0016 | - |
|
558 |
+
| 0.2685 | 16800 | 0.0001 | - |
|
559 |
+
| 0.2693 | 16850 | 0.0001 | - |
|
560 |
+
| 0.2701 | 16900 | 0.0001 | - |
|
561 |
+
| 0.2709 | 16950 | 0.0001 | - |
|
562 |
+
| 0.2717 | 17000 | 0.0001 | - |
|
563 |
+
| 0.2725 | 17050 | 0.0001 | - |
|
564 |
+
| 0.2733 | 17100 | 0.0001 | - |
|
565 |
+
| 0.2741 | 17150 | 0.0001 | - |
|
566 |
+
| 0.2749 | 17200 | 0.0001 | - |
|
567 |
+
| 0.2757 | 17250 | 0.0001 | - |
|
568 |
+
| 0.2765 | 17300 | 0.0001 | - |
|
569 |
+
| 0.2773 | 17350 | 0.0001 | - |
|
570 |
+
| 0.2781 | 17400 | 0.0001 | - |
|
571 |
+
| 0.2789 | 17450 | 0.0001 | - |
|
572 |
+
| 0.2797 | 17500 | 0.0001 | - |
|
573 |
+
| 0.2805 | 17550 | 0.0001 | - |
|
574 |
+
| 0.2813 | 17600 | 0.0001 | - |
|
575 |
+
| 0.2821 | 17650 | 0.0001 | - |
|
576 |
+
| 0.2829 | 17700 | 0.0001 | - |
|
577 |
+
| 0.2837 | 17750 | 0.0001 | - |
|
578 |
+
| 0.2845 | 17800 | 0.0003 | - |
|
579 |
+
| 0.2853 | 17850 | 0.0001 | - |
|
580 |
+
| 0.2861 | 17900 | 0.0001 | - |
|
581 |
+
| 0.2869 | 17950 | 0.0001 | - |
|
582 |
+
| 0.2877 | 18000 | 0.0001 | - |
|
583 |
+
| 0.2885 | 18050 | 0.0001 | - |
|
584 |
+
| 0.2893 | 18100 | 0.0001 | - |
|
585 |
+
| 0.2901 | 18150 | 0.0001 | - |
|
586 |
+
| 0.2909 | 18200 | 0.0001 | - |
|
587 |
+
| 0.2917 | 18250 | 0.0001 | - |
|
588 |
+
| 0.2925 | 18300 | 0.0001 | - |
|
589 |
+
| 0.2933 | 18350 | 0.0001 | - |
|
590 |
+
| 0.2941 | 18400 | 0.0001 | - |
|
591 |
+
| 0.2949 | 18450 | 0.0001 | - |
|
592 |
+
| 0.2957 | 18500 | 0.0001 | - |
|
593 |
+
| 0.2965 | 18550 | 0.0001 | - |
|
594 |
+
| 0.2973 | 18600 | 0.0001 | - |
|
595 |
+
| 0.2981 | 18650 | 0.0001 | - |
|
596 |
+
| 0.2989 | 18700 | 0.0001 | - |
|
597 |
+
| 0.2997 | 18750 | 0.0001 | - |
|
598 |
+
| 0.3005 | 18800 | 0.0001 | - |
|
599 |
+
| 0.3013 | 18850 | 0.0001 | - |
|
600 |
+
| 0.3021 | 18900 | 0.0001 | - |
|
601 |
+
| 0.3029 | 18950 | 0.0001 | - |
|
602 |
+
| 0.3037 | 19000 | 0.0001 | - |
|
603 |
+
| 0.3045 | 19050 | 0.0001 | - |
|
604 |
+
| 0.3053 | 19100 | 0.0001 | - |
|
605 |
+
| 0.3061 | 19150 | 0.0001 | - |
|
606 |
+
| 0.3069 | 19200 | 0.0001 | - |
|
607 |
+
| 0.3077 | 19250 | 0.0001 | - |
|
608 |
+
| 0.3085 | 19300 | 0.0001 | - |
|
609 |
+
| 0.3093 | 19350 | 0.0001 | - |
|
610 |
+
| 0.3101 | 19400 | 0.0001 | - |
|
611 |
+
| 0.3109 | 19450 | 0.0001 | - |
|
612 |
+
| 0.3117 | 19500 | 0.0001 | - |
|
613 |
+
| 0.3125 | 19550 | 0.0001 | - |
|
614 |
+
| 0.3133 | 19600 | 0.0001 | - |
|
615 |
+
| 0.3141 | 19650 | 0.0001 | - |
|
616 |
+
| 0.3149 | 19700 | 0.0001 | - |
|
617 |
+
| 0.3157 | 19750 | 0.0001 | - |
|
618 |
+
| 0.3165 | 19800 | 0.0 | - |
|
619 |
+
| 0.3173 | 19850 | 0.0001 | - |
|
620 |
+
| 0.3181 | 19900 | 0.0001 | - |
|
621 |
+
| 0.3189 | 19950 | 0.0001 | - |
|
622 |
+
| 0.3197 | 20000 | 0.0001 | - |
|
623 |
+
| 0.3205 | 20050 | 0.0001 | - |
|
624 |
+
| 0.3213 | 20100 | 0.0001 | - |
|
625 |
+
| 0.3221 | 20150 | 0.0001 | - |
|
626 |
+
| 0.3229 | 20200 | 0.0 | - |
|
627 |
+
| 0.3237 | 20250 | 0.0001 | - |
|
628 |
+
| 0.3245 | 20300 | 0.0 | - |
|
629 |
+
| 0.3253 | 20350 | 0.0001 | - |
|
630 |
+
| 0.3261 | 20400 | 0.0 | - |
|
631 |
+
| 0.3269 | 20450 | 0.0 | - |
|
632 |
+
| 0.3277 | 20500 | 0.0 | - |
|
633 |
+
| 0.3285 | 20550 | 0.0001 | - |
|
634 |
+
| 0.3293 | 20600 | 0.0 | - |
|
635 |
+
| 0.3301 | 20650 | 0.0 | - |
|
636 |
+
| 0.3309 | 20700 | 0.0 | - |
|
637 |
+
| 0.3317 | 20750 | 0.0 | - |
|
638 |
+
| 0.3325 | 20800 | 0.0 | - |
|
639 |
+
| 0.3333 | 20850 | 0.0 | - |
|
640 |
+
| 0.3341 | 20900 | 0.0 | - |
|
641 |
+
| 0.3349 | 20950 | 0.0 | - |
|
642 |
+
| 0.3357 | 21000 | 0.0 | - |
|
643 |
+
| 0.3365 | 21050 | 0.0 | - |
|
644 |
+
| 0.3373 | 21100 | 0.0 | - |
|
645 |
+
| 0.3381 | 21150 | 0.0 | - |
|
646 |
+
| 0.3389 | 21200 | 0.0 | - |
|
647 |
+
| 0.3397 | 21250 | 0.0 | - |
|
648 |
+
| 0.3405 | 21300 | 0.0 | - |
|
649 |
+
| 0.3413 | 21350 | 0.0 | - |
|
650 |
+
| 0.3421 | 21400 | 0.0 | - |
|
651 |
+
| 0.3429 | 21450 | 0.0 | - |
|
652 |
+
| 0.3437 | 21500 | 0.0 | - |
|
653 |
+
| 0.3445 | 21550 | 0.0 | - |
|
654 |
+
| 0.3453 | 21600 | 0.0 | - |
|
655 |
+
| 0.3461 | 21650 | 0.0 | - |
|
656 |
+
| 0.3469 | 21700 | 0.0 | - |
|
657 |
+
| 0.3476 | 21750 | 0.0 | - |
|
658 |
+
| 0.3484 | 21800 | 0.0 | - |
|
659 |
+
| 0.3492 | 21850 | 0.0 | - |
|
660 |
+
| 0.3500 | 21900 | 0.0 | - |
|
661 |
+
| 0.3508 | 21950 | 0.0 | - |
|
662 |
+
| 0.3516 | 22000 | 0.0 | - |
|
663 |
+
| 0.3524 | 22050 | 0.0 | - |
|
664 |
+
| 0.3532 | 22100 | 0.0 | - |
|
665 |
+
| 0.3540 | 22150 | 0.0 | - |
|
666 |
+
| 0.3548 | 22200 | 0.0 | - |
|
667 |
+
| 0.3556 | 22250 | 0.0 | - |
|
668 |
+
| 0.3564 | 22300 | 0.0 | - |
|
669 |
+
| 0.3572 | 22350 | 0.0 | - |
|
670 |
+
| 0.3580 | 22400 | 0.0 | - |
|
671 |
+
| 0.3588 | 22450 | 0.0 | - |
|
672 |
+
| 0.3596 | 22500 | 0.0 | - |
|
673 |
+
| 0.3604 | 22550 | 0.0 | - |
|
674 |
+
| 0.3612 | 22600 | 0.0 | - |
|
675 |
+
| 0.3620 | 22650 | 0.0 | - |
|
676 |
+
| 0.3628 | 22700 | 0.0 | - |
|
677 |
+
| 0.3636 | 22750 | 0.0 | - |
|
678 |
+
| 0.3644 | 22800 | 0.0 | - |
|
679 |
+
| 0.3652 | 22850 | 0.0 | - |
|
680 |
+
| 0.3660 | 22900 | 0.0 | - |
|
681 |
+
| 0.3668 | 22950 | 0.0 | - |
|
682 |
+
| 0.3676 | 23000 | 0.0 | - |
|
683 |
+
| 0.3684 | 23050 | 0.0 | - |
|
684 |
+
| 0.3692 | 23100 | 0.0 | - |
|
685 |
+
| 0.3700 | 23150 | 0.0 | - |
|
686 |
+
| 0.3708 | 23200 | 0.0 | - |
|
687 |
+
| 0.3716 | 23250 | 0.0 | - |
|
688 |
+
| 0.3724 | 23300 | 0.0 | - |
|
689 |
+
| 0.3732 | 23350 | 0.0 | - |
|
690 |
+
| 0.3740 | 23400 | 0.0 | - |
|
691 |
+
| 0.3748 | 23450 | 0.0 | - |
|
692 |
+
| 0.3756 | 23500 | 0.0 | - |
|
693 |
+
| 0.3764 | 23550 | 0.0 | - |
|
694 |
+
| 0.3772 | 23600 | 0.0 | - |
|
695 |
+
| 0.3780 | 23650 | 0.0 | - |
|
696 |
+
| 0.3788 | 23700 | 0.0 | - |
|
697 |
+
| 0.3796 | 23750 | 0.0 | - |
|
698 |
+
| 0.3804 | 23800 | 0.0 | - |
|
699 |
+
| 0.3812 | 23850 | 0.0 | - |
|
700 |
+
| 0.3820 | 23900 | 0.0 | - |
|
701 |
+
| 0.3828 | 23950 | 0.0 | - |
|
702 |
+
| 0.3836 | 24000 | 0.0 | - |
|
703 |
+
| 0.3844 | 24050 | 0.0 | - |
|
704 |
+
| 0.3852 | 24100 | 0.0 | - |
|
705 |
+
| 0.3860 | 24150 | 0.0 | - |
|
706 |
+
| 0.3868 | 24200 | 0.0 | - |
|
707 |
+
| 0.3876 | 24250 | 0.0 | - |
|
708 |
+
| 0.3884 | 24300 | 0.0 | - |
|
709 |
+
| 0.3892 | 24350 | 0.0 | - |
|
710 |
+
| 0.3900 | 24400 | 0.0 | - |
|
711 |
+
| 0.3908 | 24450 | 0.0 | - |
|
712 |
+
| 0.3916 | 24500 | 0.0 | - |
|
713 |
+
| 0.3924 | 24550 | 0.0 | - |
|
714 |
+
| 0.3932 | 24600 | 0.0 | - |
|
715 |
+
| 0.3940 | 24650 | 0.0 | - |
|
716 |
+
| 0.3948 | 24700 | 0.0 | - |
|
717 |
+
| 0.3956 | 24750 | 0.0 | - |
|
718 |
+
| 0.3964 | 24800 | 0.0 | - |
|
719 |
+
| 0.3972 | 24850 | 0.0 | - |
|
720 |
+
| 0.3980 | 24900 | 0.0 | - |
|
721 |
+
| 0.3988 | 24950 | 0.0 | - |
|
722 |
+
| 0.3996 | 25000 | 0.0 | - |
|
723 |
+
| 0.4004 | 25050 | 0.0 | - |
|
724 |
+
| 0.4012 | 25100 | 0.0 | - |
|
725 |
+
| 0.4020 | 25150 | 0.0 | - |
|
726 |
+
| 0.4028 | 25200 | 0.0 | - |
|
727 |
+
| 0.4036 | 25250 | 0.0 | - |
|
728 |
+
| 0.4044 | 25300 | 0.0 | - |
|
729 |
+
| 0.4052 | 25350 | 0.0 | - |
|
730 |
+
| 0.4060 | 25400 | 0.0 | - |
|
731 |
+
| 0.4068 | 25450 | 0.0 | - |
|
732 |
+
| 0.4076 | 25500 | 0.0 | - |
|
733 |
+
| 0.4084 | 25550 | 0.0 | - |
|
734 |
+
| 0.4092 | 25600 | 0.0 | - |
|
735 |
+
| 0.4100 | 25650 | 0.0 | - |
|
736 |
+
| 0.4108 | 25700 | 0.0 | - |
|
737 |
+
| 0.4116 | 25750 | 0.0 | - |
|
738 |
+
| 0.4124 | 25800 | 0.0 | - |
|
739 |
+
| 0.4132 | 25850 | 0.0 | - |
|
740 |
+
| 0.4140 | 25900 | 0.0 | - |
|
741 |
+
| 0.4148 | 25950 | 0.0 | - |
|
742 |
+
| 0.4156 | 26000 | 0.0 | - |
|
743 |
+
| 0.4164 | 26050 | 0.0 | - |
|
744 |
+
| 0.4172 | 26100 | 0.0 | - |
|
745 |
+
| 0.4180 | 26150 | 0.0 | - |
|
746 |
+
| 0.4188 | 26200 | 0.0 | - |
|
747 |
+
| 0.4196 | 26250 | 0.0 | - |
|
748 |
+
| 0.4204 | 26300 | 0.0 | - |
|
749 |
+
| 0.4212 | 26350 | 0.0 | - |
|
750 |
+
| 0.4220 | 26400 | 0.0 | - |
|
751 |
+
| 0.4228 | 26450 | 0.0 | - |
|
752 |
+
| 0.4236 | 26500 | 0.0 | - |
|
753 |
+
| 0.4244 | 26550 | 0.0 | - |
|
754 |
+
| 0.4252 | 26600 | 0.0 | - |
|
755 |
+
| 0.4260 | 26650 | 0.0 | - |
|
756 |
+
| 0.4268 | 26700 | 0.0 | - |
|
757 |
+
| 0.4276 | 26750 | 0.0 | - |
|
758 |
+
| 0.4284 | 26800 | 0.0 | - |
|
759 |
+
| 0.4292 | 26850 | 0.0 | - |
|
760 |
+
| 0.4300 | 26900 | 0.0 | - |
|
761 |
+
| 0.4308 | 26950 | 0.0 | - |
|
762 |
+
| 0.4316 | 27000 | 0.0 | - |
|
763 |
+
| 0.4324 | 27050 | 0.0 | - |
|
764 |
+
| 0.4332 | 27100 | 0.0 | - |
|
765 |
+
| 0.4340 | 27150 | 0.0 | - |
|
766 |
+
| 0.4348 | 27200 | 0.0 | - |
|
767 |
+
| 0.4356 | 27250 | 0.0 | - |
|
768 |
+
| 0.4364 | 27300 | 0.0 | - |
|
769 |
+
| 0.4372 | 27350 | 0.0 | - |
|
770 |
+
| 0.4380 | 27400 | 0.0 | - |
|
771 |
+
| 0.4388 | 27450 | 0.0 | - |
|
772 |
+
| 0.4396 | 27500 | 0.0 | - |
|
773 |
+
| 0.4404 | 27550 | 0.0 | - |
|
774 |
+
| 0.4412 | 27600 | 0.0 | - |
|
775 |
+
| 0.4420 | 27650 | 0.0 | - |
|
776 |
+
| 0.4428 | 27700 | 0.0 | - |
|
777 |
+
| 0.4436 | 27750 | 0.0 | - |
|
778 |
+
| 0.4444 | 27800 | 0.0 | - |
|
779 |
+
| 0.4452 | 27850 | 0.0 | - |
|
780 |
+
| 0.4460 | 27900 | 0.0 | - |
|
781 |
+
| 0.4467 | 27950 | 0.0 | - |
|
782 |
+
| 0.4475 | 28000 | 0.0 | - |
|
783 |
+
| 0.4483 | 28050 | 0.0 | - |
|
784 |
+
| 0.4491 | 28100 | 0.0 | - |
|
785 |
+
| 0.4499 | 28150 | 0.0 | - |
|
786 |
+
| 0.4507 | 28200 | 0.0 | - |
|
787 |
+
| 0.4515 | 28250 | 0.0 | - |
|
788 |
+
| 0.4523 | 28300 | 0.0 | - |
|
789 |
+
| 0.4531 | 28350 | 0.0 | - |
|
790 |
+
| 0.4539 | 28400 | 0.0 | - |
|
791 |
+
| 0.4547 | 28450 | 0.0 | - |
|
792 |
+
| 0.4555 | 28500 | 0.0 | - |
|
793 |
+
| 0.4563 | 28550 | 0.0 | - |
|
794 |
+
| 0.4571 | 28600 | 0.0 | - |
|
795 |
+
| 0.4579 | 28650 | 0.0 | - |
|
796 |
+
| 0.4587 | 28700 | 0.0 | - |
|
797 |
+
| 0.4595 | 28750 | 0.0 | - |
|
798 |
+
| 0.4603 | 28800 | 0.0 | - |
|
799 |
+
| 0.4611 | 28850 | 0.0 | - |
|
800 |
+
| 0.4619 | 28900 | 0.0 | - |
|
801 |
+
| 0.4627 | 28950 | 0.0 | - |
|
802 |
+
| 0.4635 | 29000 | 0.0 | - |
|
803 |
+
| 0.4643 | 29050 | 0.0 | - |
|
804 |
+
| 0.4651 | 29100 | 0.0 | - |
|
805 |
+
| 0.4659 | 29150 | 0.0 | - |
|
806 |
+
| 0.4667 | 29200 | 0.0 | - |
|
807 |
+
| 0.4675 | 29250 | 0.0 | - |
|
808 |
+
| 0.4683 | 29300 | 0.0 | - |
|
809 |
+
| 0.4691 | 29350 | 0.0003 | - |
|
810 |
+
| 0.4699 | 29400 | 0.0 | - |
|
811 |
+
| 0.4707 | 29450 | 0.0005 | - |
|
812 |
+
| 0.4715 | 29500 | 0.0 | - |
|
813 |
+
| 0.4723 | 29550 | 0.0 | - |
|
814 |
+
| 0.4731 | 29600 | 0.0 | - |
|
815 |
+
| 0.4739 | 29650 | 0.0001 | - |
|
816 |
+
| 0.4747 | 29700 | 0.0 | - |
|
817 |
+
| 0.4755 | 29750 | 0.0 | - |
|
818 |
+
| 0.4763 | 29800 | 0.0 | - |
|
819 |
+
| 0.4771 | 29850 | 0.0 | - |
|
820 |
+
| 0.4779 | 29900 | 0.0 | - |
|
821 |
+
| 0.4787 | 29950 | 0.0 | - |
|
822 |
+
| 0.4795 | 30000 | 0.0 | - |
|
823 |
+
| 0.4803 | 30050 | 0.0 | - |
|
824 |
+
| 0.4811 | 30100 | 0.0 | - |
|
825 |
+
| 0.4819 | 30150 | 0.0 | - |
|
826 |
+
| 0.4827 | 30200 | 0.0 | - |
|
827 |
+
| 0.4835 | 30250 | 0.0 | - |
|
828 |
+
| 0.4843 | 30300 | 0.0 | - |
|
829 |
+
| 0.4851 | 30350 | 0.0 | - |
|
830 |
+
| 0.4859 | 30400 | 0.0 | - |
|
831 |
+
| 0.4867 | 30450 | 0.0 | - |
|
832 |
+
| 0.4875 | 30500 | 0.0 | - |
|
833 |
+
| 0.4883 | 30550 | 0.0 | - |
|
834 |
+
| 0.4891 | 30600 | 0.0 | - |
|
835 |
+
| 0.4899 | 30650 | 0.0 | - |
|
836 |
+
| 0.4907 | 30700 | 0.0 | - |
|
837 |
+
| 0.4915 | 30750 | 0.0 | - |
|
838 |
+
| 0.4923 | 30800 | 0.0 | - |
|
839 |
+
| 0.4931 | 30850 | 0.0 | - |
|
840 |
+
| 0.4939 | 30900 | 0.0 | - |
|
841 |
+
| 0.4947 | 30950 | 0.0 | - |
|
842 |
+
| 0.4955 | 31000 | 0.0 | - |
|
843 |
+
| 0.4963 | 31050 | 0.0 | - |
|
844 |
+
| 0.4971 | 31100 | 0.0 | - |
|
845 |
+
| 0.4979 | 31150 | 0.0 | - |
|
846 |
+
| 0.4987 | 31200 | 0.0 | - |
|
847 |
+
| 0.4995 | 31250 | 0.0 | - |
|
848 |
+
| 0.5003 | 31300 | 0.0 | - |
|
849 |
+
| 0.5011 | 31350 | 0.0 | - |
|
850 |
+
| 0.5019 | 31400 | 0.0 | - |
|
851 |
+
| 0.5027 | 31450 | 0.0 | - |
|
852 |
+
| 0.5035 | 31500 | 0.0 | - |
|
853 |
+
| 0.5043 | 31550 | 0.0043 | - |
|
854 |
+
| 0.5051 | 31600 | 0.0008 | - |
|
855 |
+
| 0.5059 | 31650 | 0.0 | - |
|
856 |
+
| 0.5067 | 31700 | 0.0 | - |
|
857 |
+
| 0.5075 | 31750 | 0.0 | - |
|
858 |
+
| 0.5083 | 31800 | 0.0 | - |
|
859 |
+
| 0.5091 | 31850 | 0.0 | - |
|
860 |
+
| 0.5099 | 31900 | 0.0 | - |
|
861 |
+
| 0.5107 | 31950 | 0.0 | - |
|
862 |
+
| 0.5115 | 32000 | 0.0 | - |
|
863 |
+
| 0.5123 | 32050 | 0.0 | - |
|
864 |
+
| 0.5131 | 32100 | 0.0 | - |
|
865 |
+
| 0.5139 | 32150 | 0.0 | - |
|
866 |
+
| 0.5147 | 32200 | 0.0 | - |
|
867 |
+
| 0.5155 | 32250 | 0.0 | - |
|
868 |
+
| 0.5163 | 32300 | 0.0 | - |
|
869 |
+
| 0.5171 | 32350 | 0.0 | - |
|
870 |
+
| 0.5179 | 32400 | 0.0 | - |
|
871 |
+
| 0.5187 | 32450 | 0.0 | - |
|
872 |
+
| 0.5195 | 32500 | 0.0 | - |
|
873 |
+
| 0.5203 | 32550 | 0.0 | - |
|
874 |
+
| 0.5211 | 32600 | 0.0 | - |
|
875 |
+
| 0.5219 | 32650 | 0.0 | - |
|
876 |
+
| 0.5227 | 32700 | 0.0 | - |
|
877 |
+
| 0.5235 | 32750 | 0.0 | - |
|
878 |
+
| 0.5243 | 32800 | 0.0 | - |
|
879 |
+
| 0.5251 | 32850 | 0.0 | - |
|
880 |
+
| 0.5259 | 32900 | 0.0 | - |
|
881 |
+
| 0.5267 | 32950 | 0.0 | - |
|
882 |
+
| 0.5275 | 33000 | 0.0 | - |
|
883 |
+
| 0.5283 | 33050 | 0.0 | - |
|
884 |
+
| 0.5291 | 33100 | 0.0 | - |
|
885 |
+
| 0.5299 | 33150 | 0.0 | - |
|
886 |
+
| 0.5307 | 33200 | 0.0 | - |
|
887 |
+
| 0.5315 | 33250 | 0.0 | - |
|
888 |
+
| 0.5323 | 33300 | 0.0 | - |
|
889 |
+
| 0.5331 | 33350 | 0.0 | - |
|
890 |
+
| 0.5339 | 33400 | 0.0 | - |
|
891 |
+
| 0.5347 | 33450 | 0.0 | - |
|
892 |
+
| 0.5355 | 33500 | 0.0 | - |
|
893 |
+
| 0.5363 | 33550 | 0.0 | - |
|
894 |
+
| 0.5371 | 33600 | 0.0 | - |
|
895 |
+
| 0.5379 | 33650 | 0.0 | - |
|
896 |
+
| 0.5387 | 33700 | 0.0 | - |
|
897 |
+
| 0.5395 | 33750 | 0.0 | - |
|
898 |
+
| 0.5403 | 33800 | 0.0 | - |
|
899 |
+
| 0.5411 | 33850 | 0.0 | - |
|
900 |
+
| 0.5419 | 33900 | 0.0 | - |
|
901 |
+
| 0.5427 | 33950 | 0.0 | - |
|
902 |
+
| 0.5435 | 34000 | 0.0 | - |
|
903 |
+
| 0.5443 | 34050 | 0.0 | - |
|
904 |
+
| 0.5451 | 34100 | 0.0 | - |
|
905 |
+
| 0.5458 | 34150 | 0.0 | - |
|
906 |
+
| 0.5466 | 34200 | 0.0 | - |
|
907 |
+
| 0.5474 | 34250 | 0.0 | - |
|
908 |
+
| 0.5482 | 34300 | 0.0 | - |
|
909 |
+
| 0.5490 | 34350 | 0.0 | - |
|
910 |
+
| 0.5498 | 34400 | 0.0 | - |
|
911 |
+
| 0.5506 | 34450 | 0.0 | - |
|
912 |
+
| 0.5514 | 34500 | 0.0 | - |
|
913 |
+
| 0.5522 | 34550 | 0.0 | - |
|
914 |
+
| 0.5530 | 34600 | 0.0 | - |
|
915 |
+
| 0.5538 | 34650 | 0.0 | - |
|
916 |
+
| 0.5546 | 34700 | 0.0 | - |
|
917 |
+
| 0.5554 | 34750 | 0.0 | - |
|
918 |
+
| 0.5562 | 34800 | 0.0 | - |
|
919 |
+
| 0.5570 | 34850 | 0.0 | - |
|
920 |
+
| 0.5578 | 34900 | 0.0 | - |
|
921 |
+
| 0.5586 | 34950 | 0.0 | - |
|
922 |
+
| 0.5594 | 35000 | 0.0 | - |
|
923 |
+
| 0.5602 | 35050 | 0.0 | - |
|
924 |
+
| 0.5610 | 35100 | 0.0 | - |
|
925 |
+
| 0.5618 | 35150 | 0.0 | - |
|
926 |
+
| 0.5626 | 35200 | 0.0 | - |
|
927 |
+
| 0.5634 | 35250 | 0.0 | - |
|
928 |
+
| 0.5642 | 35300 | 0.0 | - |
|
929 |
+
| 0.5650 | 35350 | 0.0 | - |
|
930 |
+
| 0.5658 | 35400 | 0.0 | - |
|
931 |
+
| 0.5666 | 35450 | 0.0 | - |
|
932 |
+
| 0.5674 | 35500 | 0.0 | - |
|
933 |
+
| 0.5682 | 35550 | 0.0 | - |
|
934 |
+
| 0.5690 | 35600 | 0.0 | - |
|
935 |
+
| 0.5698 | 35650 | 0.0 | - |
|
936 |
+
| 0.5706 | 35700 | 0.0 | - |
|
937 |
+
| 0.5714 | 35750 | 0.0 | - |
|
938 |
+
| 0.5722 | 35800 | 0.0 | - |
|
939 |
+
| 0.5730 | 35850 | 0.0 | - |
|
940 |
+
| 0.5738 | 35900 | 0.0 | - |
|
941 |
+
| 0.5746 | 35950 | 0.0 | - |
|
942 |
+
| 0.5754 | 36000 | 0.0 | - |
|
943 |
+
| 0.5762 | 36050 | 0.0 | - |
|
944 |
+
| 0.5770 | 36100 | 0.0 | - |
|
945 |
+
| 0.5778 | 36150 | 0.0 | - |
|
946 |
+
| 0.5786 | 36200 | 0.0 | - |
|
947 |
+
| 0.5794 | 36250 | 0.0 | - |
|
948 |
+
| 0.5802 | 36300 | 0.0 | - |
|
949 |
+
| 0.5810 | 36350 | 0.0 | - |
|
950 |
+
| 0.5818 | 36400 | 0.0 | - |
|
951 |
+
| 0.5826 | 36450 | 0.0 | - |
|
952 |
+
| 0.5834 | 36500 | 0.0 | - |
|
953 |
+
| 0.5842 | 36550 | 0.0 | - |
|
954 |
+
| 0.5850 | 36600 | 0.0 | - |
|
955 |
+
| 0.5858 | 36650 | 0.0 | - |
|
956 |
+
| 0.5866 | 36700 | 0.0 | - |
|
957 |
+
| 0.5874 | 36750 | 0.0 | - |
|
958 |
+
| 0.5882 | 36800 | 0.0 | - |
|
959 |
+
| 0.5890 | 36850 | 0.0 | - |
|
960 |
+
| 0.5898 | 36900 | 0.0 | - |
|
961 |
+
| 0.5906 | 36950 | 0.0 | - |
|
962 |
+
| 0.5914 | 37000 | 0.0 | - |
|
963 |
+
| 0.5922 | 37050 | 0.0 | - |
|
964 |
+
| 0.5930 | 37100 | 0.0 | - |
|
965 |
+
| 0.5938 | 37150 | 0.0 | - |
|
966 |
+
| 0.5946 | 37200 | 0.0 | - |
|
967 |
+
| 0.5954 | 37250 | 0.0 | - |
|
968 |
+
| 0.5962 | 37300 | 0.0 | - |
|
969 |
+
| 0.5970 | 37350 | 0.0 | - |
|
970 |
+
| 0.5978 | 37400 | 0.0 | - |
|
971 |
+
| 0.5986 | 37450 | 0.0 | - |
|
972 |
+
| 0.5994 | 37500 | 0.0 | - |
|
973 |
+
| 0.6002 | 37550 | 0.0 | - |
|
974 |
+
| 0.6010 | 37600 | 0.0 | - |
|
975 |
+
| 0.6018 | 37650 | 0.0 | - |
|
976 |
+
| 0.6026 | 37700 | 0.0 | - |
|
977 |
+
| 0.6034 | 37750 | 0.0 | - |
|
978 |
+
| 0.6042 | 37800 | 0.0 | - |
|
979 |
+
| 0.6050 | 37850 | 0.0 | - |
|
980 |
+
| 0.6058 | 37900 | 0.0 | - |
|
981 |
+
| 0.6066 | 37950 | 0.0 | - |
|
982 |
+
| 0.6074 | 38000 | 0.0 | - |
|
983 |
+
| 0.6082 | 38050 | 0.0 | - |
|
984 |
+
| 0.6090 | 38100 | 0.0 | - |
|
985 |
+
| 0.6098 | 38150 | 0.0 | - |
|
986 |
+
| 0.6106 | 38200 | 0.0 | - |
|
987 |
+
| 0.6114 | 38250 | 0.0 | - |
|
988 |
+
| 0.6122 | 38300 | 0.0 | - |
|
989 |
+
| 0.6130 | 38350 | 0.0 | - |
|
990 |
+
| 0.6138 | 38400 | 0.0 | - |
|
991 |
+
| 0.6146 | 38450 | 0.0 | - |
|
992 |
+
| 0.6154 | 38500 | 0.0 | - |
|
993 |
+
| 0.6162 | 38550 | 0.0 | - |
|
994 |
+
| 0.6170 | 38600 | 0.0 | - |
|
995 |
+
| 0.6178 | 38650 | 0.0 | - |
|
996 |
+
| 0.6186 | 38700 | 0.0 | - |
|
997 |
+
| 0.6194 | 38750 | 0.0 | - |
|
998 |
+
| 0.6202 | 38800 | 0.0 | - |
|
999 |
+
| 0.6210 | 38850 | 0.0 | - |
|
1000 |
+
| 0.6218 | 38900 | 0.0 | - |
|
1001 |
+
| 0.6226 | 38950 | 0.0 | - |
|
1002 |
+
| 0.6234 | 39000 | 0.0 | - |
|
1003 |
+
| 0.6242 | 39050 | 0.0 | - |
|
1004 |
+
| 0.6250 | 39100 | 0.0 | - |
|
1005 |
+
| 0.6258 | 39150 | 0.0 | - |
|
1006 |
+
| 0.6266 | 39200 | 0.0 | - |
|
1007 |
+
| 0.6274 | 39250 | 0.0006 | - |
|
1008 |
+
| 0.6282 | 39300 | 0.0 | - |
|
1009 |
+
| 0.6290 | 39350 | 0.0022 | - |
|
1010 |
+
| 0.6298 | 39400 | 0.0 | - |
|
1011 |
+
| 0.6306 | 39450 | 0.0 | - |
|
1012 |
+
| 0.6314 | 39500 | 0.0 | - |
|
1013 |
+
| 0.6322 | 39550 | 0.0 | - |
|
1014 |
+
| 0.6330 | 39600 | 0.0 | - |
|
1015 |
+
| 0.6338 | 39650 | 0.0 | - |
|
1016 |
+
| 0.6346 | 39700 | 0.0 | - |
|
1017 |
+
| 0.6354 | 39750 | 0.0 | - |
|
1018 |
+
| 0.6362 | 39800 | 0.0 | - |
|
1019 |
+
| 0.6370 | 39850 | 0.0 | - |
|
1020 |
+
| 0.6378 | 39900 | 0.0 | - |
|
1021 |
+
| 0.6386 | 39950 | 0.0 | - |
|
1022 |
+
| 0.6394 | 40000 | 0.0 | - |
|
1023 |
+
| 0.6402 | 40050 | 0.0 | - |
|
1024 |
+
| 0.6410 | 40100 | 0.0 | - |
|
1025 |
+
| 0.6418 | 40150 | 0.0 | - |
|
1026 |
+
| 0.6426 | 40200 | 0.0 | - |
|
1027 |
+
| 0.6434 | 40250 | 0.0 | - |
|
1028 |
+
| 0.6442 | 40300 | 0.0 | - |
|
1029 |
+
| 0.6449 | 40350 | 0.0 | - |
|
1030 |
+
| 0.6457 | 40400 | 0.0 | - |
|
1031 |
+
| 0.6465 | 40450 | 0.0 | - |
|
1032 |
+
| 0.6473 | 40500 | 0.0 | - |
|
1033 |
+
| 0.6481 | 40550 | 0.0 | - |
|
1034 |
+
| 0.6489 | 40600 | 0.0 | - |
|
1035 |
+
| 0.6497 | 40650 | 0.0 | - |
|
1036 |
+
| 0.6505 | 40700 | 0.0 | - |
|
1037 |
+
| 0.6513 | 40750 | 0.0 | - |
|
1038 |
+
| 0.6521 | 40800 | 0.0 | - |
|
1039 |
+
| 0.6529 | 40850 | 0.0 | - |
|
1040 |
+
| 0.6537 | 40900 | 0.0 | - |
|
1041 |
+
| 0.6545 | 40950 | 0.0 | - |
|
1042 |
+
| 0.6553 | 41000 | 0.0 | - |
|
1043 |
+
| 0.6561 | 41050 | 0.0 | - |
|
1044 |
+
| 0.6569 | 41100 | 0.0 | - |
|
1045 |
+
| 0.6577 | 41150 | 0.0 | - |
|
1046 |
+
| 0.6585 | 41200 | 0.0 | - |
|
1047 |
+
| 0.6593 | 41250 | 0.0 | - |
|
1048 |
+
| 0.6601 | 41300 | 0.0 | - |
|
1049 |
+
| 0.6609 | 41350 | 0.0 | - |
|
1050 |
+
| 0.6617 | 41400 | 0.0 | - |
|
1051 |
+
| 0.6625 | 41450 | 0.0 | - |
|
1052 |
+
| 0.6633 | 41500 | 0.0 | - |
|
1053 |
+
| 0.6641 | 41550 | 0.0 | - |
|
1054 |
+
| 0.6649 | 41600 | 0.0 | - |
|
1055 |
+
| 0.6657 | 41650 | 0.0 | - |
|
1056 |
+
| 0.6665 | 41700 | 0.0 | - |
|
1057 |
+
| 0.6673 | 41750 | 0.0 | - |
|
1058 |
+
| 0.6681 | 41800 | 0.0 | - |
|
1059 |
+
| 0.6689 | 41850 | 0.0 | - |
|
1060 |
+
| 0.6697 | 41900 | 0.0 | - |
|
1061 |
+
| 0.6705 | 41950 | 0.0 | - |
|
1062 |
+
| 0.6713 | 42000 | 0.0 | - |
|
1063 |
+
| 0.6721 | 42050 | 0.0 | - |
|
1064 |
+
| 0.6729 | 42100 | 0.0 | - |
|
1065 |
+
| 0.6737 | 42150 | 0.0 | - |
|
1066 |
+
| 0.6745 | 42200 | 0.0 | - |
|
1067 |
+
| 0.6753 | 42250 | 0.0 | - |
|
1068 |
+
| 0.6761 | 42300 | 0.0 | - |
|
1069 |
+
| 0.6769 | 42350 | 0.0 | - |
|
1070 |
+
| 0.6777 | 42400 | 0.0 | - |
|
1071 |
+
| 0.6785 | 42450 | 0.0 | - |
|
1072 |
+
| 0.6793 | 42500 | 0.0 | - |
|
1073 |
+
| 0.6801 | 42550 | 0.0 | - |
|
1074 |
+
| 0.6809 | 42600 | 0.0 | - |
|
1075 |
+
| 0.6817 | 42650 | 0.0 | - |
|
1076 |
+
| 0.6825 | 42700 | 0.0 | - |
|
1077 |
+
| 0.6833 | 42750 | 0.0 | - |
|
1078 |
+
| 0.6841 | 42800 | 0.0 | - |
|
1079 |
+
| 0.6849 | 42850 | 0.0 | - |
|
1080 |
+
| 0.6857 | 42900 | 0.0 | - |
|
1081 |
+
| 0.6865 | 42950 | 0.0 | - |
|
1082 |
+
| 0.6873 | 43000 | 0.0 | - |
|
1083 |
+
| 0.6881 | 43050 | 0.0 | - |
|
1084 |
+
| 0.6889 | 43100 | 0.0 | - |
|
1085 |
+
| 0.6897 | 43150 | 0.0 | - |
|
1086 |
+
| 0.6905 | 43200 | 0.0 | - |
|
1087 |
+
| 0.6913 | 43250 | 0.0 | - |
|
1088 |
+
| 0.6921 | 43300 | 0.0 | - |
|
1089 |
+
| 0.6929 | 43350 | 0.0 | - |
|
1090 |
+
| 0.6937 | 43400 | 0.0 | - |
|
1091 |
+
| 0.6945 | 43450 | 0.0 | - |
|
1092 |
+
| 0.6953 | 43500 | 0.0 | - |
|
1093 |
+
| 0.6961 | 43550 | 0.0 | - |
|
1094 |
+
| 0.6969 | 43600 | 0.0 | - |
|
1095 |
+
| 0.6977 | 43650 | 0.0 | - |
|
1096 |
+
| 0.6985 | 43700 | 0.0 | - |
|
1097 |
+
| 0.6993 | 43750 | 0.0 | - |
|
1098 |
+
| 0.7001 | 43800 | 0.0 | - |
|
1099 |
+
| 0.7009 | 43850 | 0.0 | - |
|
1100 |
+
| 0.7017 | 43900 | 0.0 | - |
|
1101 |
+
| 0.7025 | 43950 | 0.0 | - |
|
1102 |
+
| 0.7033 | 44000 | 0.0 | - |
|
1103 |
+
| 0.7041 | 44050 | 0.0 | - |
|
1104 |
+
| 0.7049 | 44100 | 0.0 | - |
|
1105 |
+
| 0.7057 | 44150 | 0.0 | - |
|
1106 |
+
| 0.7065 | 44200 | 0.0 | - |
|
1107 |
+
| 0.7073 | 44250 | 0.0 | - |
|
1108 |
+
| 0.7081 | 44300 | 0.0 | - |
|
1109 |
+
| 0.7089 | 44350 | 0.0 | - |
|
1110 |
+
| 0.7097 | 44400 | 0.0 | - |
|
1111 |
+
| 0.7105 | 44450 | 0.0 | - |
|
1112 |
+
| 0.7113 | 44500 | 0.0 | - |
|
1113 |
+
| 0.7121 | 44550 | 0.0 | - |
|
1114 |
+
| 0.7129 | 44600 | 0.0 | - |
|
1115 |
+
| 0.7137 | 44650 | 0.0 | - |
|
1116 |
+
| 0.7145 | 44700 | 0.0 | - |
|
1117 |
+
| 0.7153 | 44750 | 0.0 | - |
|
1118 |
+
| 0.7161 | 44800 | 0.0 | - |
|
1119 |
+
| 0.7169 | 44850 | 0.0 | - |
|
1120 |
+
| 0.7177 | 44900 | 0.0 | - |
|
1121 |
+
| 0.7185 | 44950 | 0.0 | - |
|
1122 |
+
| 0.7193 | 45000 | 0.0 | - |
|
1123 |
+
| 0.7201 | 45050 | 0.0 | - |
|
1124 |
+
| 0.7209 | 45100 | 0.0 | - |
|
1125 |
+
| 0.7217 | 45150 | 0.0 | - |
|
1126 |
+
| 0.7225 | 45200 | 0.0 | - |
|
1127 |
+
| 0.7233 | 45250 | 0.0 | - |
|
1128 |
+
| 0.7241 | 45300 | 0.0 | - |
|
1129 |
+
| 0.7249 | 45350 | 0.0 | - |
|
1130 |
+
| 0.7257 | 45400 | 0.0 | - |
|
1131 |
+
| 0.7265 | 45450 | 0.0 | - |
|
1132 |
+
| 0.7273 | 45500 | 0.0 | - |
|
1133 |
+
| 0.7281 | 45550 | 0.0 | - |
|
1134 |
+
| 0.7289 | 45600 | 0.0 | - |
|
1135 |
+
| 0.7297 | 45650 | 0.0001 | - |
|
1136 |
+
| 0.7305 | 45700 | 0.0 | - |
|
1137 |
+
| 0.7313 | 45750 | 0.0 | - |
|
1138 |
+
| 0.7321 | 45800 | 0.0 | - |
|
1139 |
+
| 0.7329 | 45850 | 0.0 | - |
|
1140 |
+
| 0.7337 | 45900 | 0.0 | - |
|
1141 |
+
| 0.7345 | 45950 | 0.0 | - |
|
1142 |
+
| 0.7353 | 46000 | 0.0 | - |
|
1143 |
+
| 0.7361 | 46050 | 0.0 | - |
|
1144 |
+
| 0.7369 | 46100 | 0.0 | - |
|
1145 |
+
| 0.7377 | 46150 | 0.0 | - |
|
1146 |
+
| 0.7385 | 46200 | 0.0 | - |
|
1147 |
+
| 0.7393 | 46250 | 0.0 | - |
|
1148 |
+
| 0.7401 | 46300 | 0.0 | - |
|
1149 |
+
| 0.7409 | 46350 | 0.0 | - |
|
1150 |
+
| 0.7417 | 46400 | 0.0 | - |
|
1151 |
+
| 0.7425 | 46450 | 0.0 | - |
|
1152 |
+
| 0.7433 | 46500 | 0.0 | - |
|
1153 |
+
| 0.7440 | 46550 | 0.0 | - |
|
1154 |
+
| 0.7448 | 46600 | 0.0 | - |
|
1155 |
+
| 0.7456 | 46650 | 0.0 | - |
|
1156 |
+
| 0.7464 | 46700 | 0.0 | - |
|
1157 |
+
| 0.7472 | 46750 | 0.0 | - |
|
1158 |
+
| 0.7480 | 46800 | 0.0 | - |
|
1159 |
+
| 0.7488 | 46850 | 0.0 | - |
|
1160 |
+
| 0.7496 | 46900 | 0.0 | - |
|
1161 |
+
| 0.7504 | 46950 | 0.0 | - |
|
1162 |
+
| 0.7512 | 47000 | 0.0 | - |
|
1163 |
+
| 0.7520 | 47050 | 0.0 | - |
|
1164 |
+
| 0.7528 | 47100 | 0.0 | - |
|
1165 |
+
| 0.7536 | 47150 | 0.0 | - |
|
1166 |
+
| 0.7544 | 47200 | 0.0 | - |
|
1167 |
+
| 0.7552 | 47250 | 0.0 | - |
|
1168 |
+
| 0.7560 | 47300 | 0.0 | - |
|
1169 |
+
| 0.7568 | 47350 | 0.0 | - |
|
1170 |
+
| 0.7576 | 47400 | 0.0 | - |
|
1171 |
+
| 0.7584 | 47450 | 0.0 | - |
|
1172 |
+
| 0.7592 | 47500 | 0.0 | - |
|
1173 |
+
| 0.7600 | 47550 | 0.0 | - |
|
1174 |
+
| 0.7608 | 47600 | 0.0 | - |
|
1175 |
+
| 0.7616 | 47650 | 0.0 | - |
|
1176 |
+
| 0.7624 | 47700 | 0.0 | - |
|
1177 |
+
| 0.7632 | 47750 | 0.0 | - |
|
1178 |
+
| 0.7640 | 47800 | 0.0 | - |
|
1179 |
+
| 0.7648 | 47850 | 0.0 | - |
|
1180 |
+
| 0.7656 | 47900 | 0.0 | - |
|
1181 |
+
| 0.7664 | 47950 | 0.0 | - |
|
1182 |
+
| 0.7672 | 48000 | 0.0 | - |
|
1183 |
+
| 0.7680 | 48050 | 0.0 | - |
|
1184 |
+
| 0.7688 | 48100 | 0.0 | - |
|
1185 |
+
| 0.7696 | 48150 | 0.0 | - |
|
1186 |
+
| 0.7704 | 48200 | 0.0 | - |
|
1187 |
+
| 0.7712 | 48250 | 0.0 | - |
|
1188 |
+
| 0.7720 | 48300 | 0.0 | - |
|
1189 |
+
| 0.7728 | 48350 | 0.0 | - |
|
1190 |
+
| 0.7736 | 48400 | 0.0 | - |
|
1191 |
+
| 0.7744 | 48450 | 0.0 | - |
|
1192 |
+
| 0.7752 | 48500 | 0.0 | - |
|
1193 |
+
| 0.7760 | 48550 | 0.0 | - |
|
1194 |
+
| 0.7768 | 48600 | 0.0 | - |
|
1195 |
+
| 0.7776 | 48650 | 0.0 | - |
|
1196 |
+
| 0.7784 | 48700 | 0.0 | - |
|
1197 |
+
| 0.7792 | 48750 | 0.0 | - |
|
1198 |
+
| 0.7800 | 48800 | 0.0 | - |
|
1199 |
+
| 0.7808 | 48850 | 0.0 | - |
|
1200 |
+
| 0.7816 | 48900 | 0.0 | - |
|
1201 |
+
| 0.7824 | 48950 | 0.0 | - |
|
1202 |
+
| 0.7832 | 49000 | 0.0 | - |
|
1203 |
+
| 0.7840 | 49050 | 0.0 | - |
|
1204 |
+
| 0.7848 | 49100 | 0.0 | - |
|
1205 |
+
| 0.7856 | 49150 | 0.0 | - |
|
1206 |
+
| 0.7864 | 49200 | 0.0 | - |
|
1207 |
+
| 0.7872 | 49250 | 0.0 | - |
|
1208 |
+
| 0.7880 | 49300 | 0.0 | - |
|
1209 |
+
| 0.7888 | 49350 | 0.0 | - |
|
1210 |
+
| 0.7896 | 49400 | 0.0 | - |
|
1211 |
+
| 0.7904 | 49450 | 0.0 | - |
|
1212 |
+
| 0.7912 | 49500 | 0.0 | - |
|
1213 |
+
| 0.7920 | 49550 | 0.0 | - |
|
1214 |
+
| 0.7928 | 49600 | 0.0 | - |
|
1215 |
+
| 0.7936 | 49650 | 0.0 | - |
|
1216 |
+
| 0.7944 | 49700 | 0.0 | - |
|
1217 |
+
| 0.7952 | 49750 | 0.0 | - |
|
1218 |
+
| 0.7960 | 49800 | 0.0 | - |
|
1219 |
+
| 0.7968 | 49850 | 0.0 | - |
|
1220 |
+
| 0.7976 | 49900 | 0.0 | - |
|
1221 |
+
| 0.7984 | 49950 | 0.0 | - |
|
1222 |
+
| 0.7992 | 50000 | 0.0 | - |
|
1223 |
+
| 0.8000 | 50050 | 0.0 | - |
|
1224 |
+
| 0.8008 | 50100 | 0.0 | - |
|
1225 |
+
| 0.8016 | 50150 | 0.0 | - |
|
1226 |
+
| 0.8024 | 50200 | 0.0 | - |
|
1227 |
+
| 0.8032 | 50250 | 0.0 | - |
|
1228 |
+
| 0.8040 | 50300 | 0.0 | - |
|
1229 |
+
| 0.8048 | 50350 | 0.0 | - |
|
1230 |
+
| 0.8056 | 50400 | 0.0 | - |
|
1231 |
+
| 0.8064 | 50450 | 0.0 | - |
|
1232 |
+
| 0.8072 | 50500 | 0.0 | - |
|
1233 |
+
| 0.8080 | 50550 | 0.0 | - |
|
1234 |
+
| 0.8088 | 50600 | 0.0 | - |
|
1235 |
+
| 0.8096 | 50650 | 0.0 | - |
|
1236 |
+
| 0.8104 | 50700 | 0.0 | - |
|
1237 |
+
| 0.8112 | 50750 | 0.0 | - |
|
1238 |
+
| 0.8120 | 50800 | 0.0 | - |
|
1239 |
+
| 0.8128 | 50850 | 0.0 | - |
|
1240 |
+
| 0.8136 | 50900 | 0.0 | - |
|
1241 |
+
| 0.8144 | 50950 | 0.0 | - |
|
1242 |
+
| 0.8152 | 51000 | 0.0 | - |
|
1243 |
+
| 0.8160 | 51050 | 0.0 | - |
|
1244 |
+
| 0.8168 | 51100 | 0.0 | - |
|
1245 |
+
| 0.8176 | 51150 | 0.0 | - |
|
1246 |
+
| 0.8184 | 51200 | 0.0 | - |
|
1247 |
+
| 0.8192 | 51250 | 0.0 | - |
|
1248 |
+
| 0.8200 | 51300 | 0.0 | - |
|
1249 |
+
| 0.8208 | 51350 | 0.0 | - |
|
1250 |
+
| 0.8216 | 51400 | 0.0 | - |
|
1251 |
+
| 0.8224 | 51450 | 0.0 | - |
|
1252 |
+
| 0.8232 | 51500 | 0.0 | - |
|
1253 |
+
| 0.8240 | 51550 | 0.0 | - |
|
1254 |
+
| 0.8248 | 51600 | 0.0 | - |
|
1255 |
+
| 0.8256 | 51650 | 0.0 | - |
|
1256 |
+
| 0.8264 | 51700 | 0.0 | - |
|
1257 |
+
| 0.8272 | 51750 | 0.0 | - |
|
1258 |
+
| 0.8280 | 51800 | 0.0 | - |
|
1259 |
+
| 0.8288 | 51850 | 0.0 | - |
|
1260 |
+
| 0.8296 | 51900 | 0.0 | - |
|
1261 |
+
| 0.8304 | 51950 | 0.0 | - |
|
1262 |
+
| 0.8312 | 52000 | 0.0 | - |
|
1263 |
+
| 0.8320 | 52050 | 0.0 | - |
|
1264 |
+
| 0.8328 | 52100 | 0.0 | - |
|
1265 |
+
| 0.8336 | 52150 | 0.0 | - |
|
1266 |
+
| 0.8344 | 52200 | 0.0 | - |
|
1267 |
+
| 0.8352 | 52250 | 0.0 | - |
|
1268 |
+
| 0.8360 | 52300 | 0.0 | - |
|
1269 |
+
| 0.8368 | 52350 | 0.0 | - |
|
1270 |
+
| 0.8376 | 52400 | 0.0 | - |
|
1271 |
+
| 0.8384 | 52450 | 0.0 | - |
|
1272 |
+
| 0.8392 | 52500 | 0.0 | - |
|
1273 |
+
| 0.8400 | 52550 | 0.0 | - |
|
1274 |
+
| 0.8408 | 52600 | 0.0 | - |
|
1275 |
+
| 0.8416 | 52650 | 0.0 | - |
|
1276 |
+
| 0.8424 | 52700 | 0.0 | - |
|
1277 |
+
| 0.8432 | 52750 | 0.0 | - |
|
1278 |
+
| 0.8439 | 52800 | 0.0 | - |
|
1279 |
+
| 0.8447 | 52850 | 0.0 | - |
|
1280 |
+
| 0.8455 | 52900 | 0.0 | - |
|
1281 |
+
| 0.8463 | 52950 | 0.0 | - |
|
1282 |
+
| 0.8471 | 53000 | 0.0 | - |
|
1283 |
+
| 0.8479 | 53050 | 0.0 | - |
|
1284 |
+
| 0.8487 | 53100 | 0.0 | - |
|
1285 |
+
| 0.8495 | 53150 | 0.0 | - |
|
1286 |
+
| 0.8503 | 53200 | 0.0 | - |
|
1287 |
+
| 0.8511 | 53250 | 0.0 | - |
|
1288 |
+
| 0.8519 | 53300 | 0.0 | - |
|
1289 |
+
| 0.8527 | 53350 | 0.0 | - |
|
1290 |
+
| 0.8535 | 53400 | 0.0 | - |
|
1291 |
+
| 0.8543 | 53450 | 0.0 | - |
|
1292 |
+
| 0.8551 | 53500 | 0.0 | - |
|
1293 |
+
| 0.8559 | 53550 | 0.0 | - |
|
1294 |
+
| 0.8567 | 53600 | 0.0 | - |
|
1295 |
+
| 0.8575 | 53650 | 0.0 | - |
|
1296 |
+
| 0.8583 | 53700 | 0.0 | - |
|
1297 |
+
| 0.8591 | 53750 | 0.0 | - |
|
1298 |
+
| 0.8599 | 53800 | 0.0 | - |
|
1299 |
+
| 0.8607 | 53850 | 0.0 | - |
|
1300 |
+
| 0.8615 | 53900 | 0.0 | - |
|
1301 |
+
| 0.8623 | 53950 | 0.0 | - |
|
1302 |
+
| 0.8631 | 54000 | 0.0 | - |
|
1303 |
+
| 0.8639 | 54050 | 0.0 | - |
|
1304 |
+
| 0.8647 | 54100 | 0.0 | - |
|
1305 |
+
| 0.8655 | 54150 | 0.0 | - |
|
1306 |
+
| 0.8663 | 54200 | 0.0 | - |
|
1307 |
+
| 0.8671 | 54250 | 0.0 | - |
|
1308 |
+
| 0.8679 | 54300 | 0.0 | - |
|
1309 |
+
| 0.8687 | 54350 | 0.0 | - |
|
1310 |
+
| 0.8695 | 54400 | 0.0 | - |
|
1311 |
+
| 0.8703 | 54450 | 0.0 | - |
|
1312 |
+
| 0.8711 | 54500 | 0.0 | - |
|
1313 |
+
| 0.8719 | 54550 | 0.0 | - |
|
1314 |
+
| 0.8727 | 54600 | 0.0 | - |
|
1315 |
+
| 0.8735 | 54650 | 0.0 | - |
|
1316 |
+
| 0.8743 | 54700 | 0.0 | - |
|
1317 |
+
| 0.8751 | 54750 | 0.0 | - |
|
1318 |
+
| 0.8759 | 54800 | 0.0 | - |
|
1319 |
+
| 0.8767 | 54850 | 0.0 | - |
|
1320 |
+
| 0.8775 | 54900 | 0.0 | - |
|
1321 |
+
| 0.8783 | 54950 | 0.0 | - |
|
1322 |
+
| 0.8791 | 55000 | 0.0 | - |
|
1323 |
+
| 0.8799 | 55050 | 0.0 | - |
|
1324 |
+
| 0.8807 | 55100 | 0.0 | - |
|
1325 |
+
| 0.8815 | 55150 | 0.0 | - |
|
1326 |
+
| 0.8823 | 55200 | 0.0 | - |
|
1327 |
+
| 0.8831 | 55250 | 0.0 | - |
|
1328 |
+
| 0.8839 | 55300 | 0.0 | - |
|
1329 |
+
| 0.8847 | 55350 | 0.0 | - |
|
1330 |
+
| 0.8855 | 55400 | 0.0 | - |
|
1331 |
+
| 0.8863 | 55450 | 0.0 | - |
|
1332 |
+
| 0.8871 | 55500 | 0.0 | - |
|
1333 |
+
| 0.8879 | 55550 | 0.0 | - |
|
1334 |
+
| 0.8887 | 55600 | 0.0004 | - |
|
1335 |
+
| 0.8895 | 55650 | 0.0 | - |
|
1336 |
+
| 0.8903 | 55700 | 0.0 | - |
|
1337 |
+
| 0.8911 | 55750 | 0.0 | - |
|
1338 |
+
| 0.8919 | 55800 | 0.0 | - |
|
1339 |
+
| 0.8927 | 55850 | 0.0 | - |
|
1340 |
+
| 0.8935 | 55900 | 0.0 | - |
|
1341 |
+
| 0.8943 | 55950 | 0.0 | - |
|
1342 |
+
| 0.8951 | 56000 | 0.0 | - |
|
1343 |
+
| 0.8959 | 56050 | 0.0 | - |
|
1344 |
+
| 0.8967 | 56100 | 0.0 | - |
|
1345 |
+
| 0.8975 | 56150 | 0.0 | - |
|
1346 |
+
| 0.8983 | 56200 | 0.0 | - |
|
1347 |
+
| 0.8991 | 56250 | 0.0 | - |
|
1348 |
+
| 0.8999 | 56300 | 0.0 | - |
|
1349 |
+
| 0.9007 | 56350 | 0.0 | - |
|
1350 |
+
| 0.9015 | 56400 | 0.0 | - |
|
1351 |
+
| 0.9023 | 56450 | 0.0 | - |
|
1352 |
+
| 0.9031 | 56500 | 0.0 | - |
|
1353 |
+
| 0.9039 | 56550 | 0.0 | - |
|
1354 |
+
| 0.9047 | 56600 | 0.0 | - |
|
1355 |
+
| 0.9055 | 56650 | 0.0 | - |
|
1356 |
+
| 0.9063 | 56700 | 0.0 | - |
|
1357 |
+
| 0.9071 | 56750 | 0.0 | - |
|
1358 |
+
| 0.9079 | 56800 | 0.0 | - |
|
1359 |
+
| 0.9087 | 56850 | 0.0 | - |
|
1360 |
+
| 0.9095 | 56900 | 0.0 | - |
|
1361 |
+
| 0.9103 | 56950 | 0.0 | - |
|
1362 |
+
| 0.9111 | 57000 | 0.0 | - |
|
1363 |
+
| 0.9119 | 57050 | 0.0 | - |
|
1364 |
+
| 0.9127 | 57100 | 0.0 | - |
|
1365 |
+
| 0.9135 | 57150 | 0.0 | - |
|
1366 |
+
| 0.9143 | 57200 | 0.0 | - |
|
1367 |
+
| 0.9151 | 57250 | 0.0 | - |
|
1368 |
+
| 0.9159 | 57300 | 0.0 | - |
|
1369 |
+
| 0.9167 | 57350 | 0.0 | - |
|
1370 |
+
| 0.9175 | 57400 | 0.0 | - |
|
1371 |
+
| 0.9183 | 57450 | 0.0 | - |
|
1372 |
+
| 0.9191 | 57500 | 0.0 | - |
|
1373 |
+
| 0.9199 | 57550 | 0.0 | - |
|
1374 |
+
| 0.9207 | 57600 | 0.0 | - |
|
1375 |
+
| 0.9215 | 57650 | 0.0 | - |
|
1376 |
+
| 0.9223 | 57700 | 0.0 | - |
|
1377 |
+
| 0.9231 | 57750 | 0.0 | - |
|
1378 |
+
| 0.9239 | 57800 | 0.0 | - |
|
1379 |
+
| 0.9247 | 57850 | 0.0 | - |
|
1380 |
+
| 0.9255 | 57900 | 0.0 | - |
|
1381 |
+
| 0.9263 | 57950 | 0.0 | - |
|
1382 |
+
| 0.9271 | 58000 | 0.0 | - |
|
1383 |
+
| 0.9279 | 58050 | 0.0 | - |
|
1384 |
+
| 0.9287 | 58100 | 0.0 | - |
|
1385 |
+
| 0.9295 | 58150 | 0.0 | - |
|
1386 |
+
| 0.9303 | 58200 | 0.0 | - |
|
1387 |
+
| 0.9311 | 58250 | 0.0 | - |
|
1388 |
+
| 0.9319 | 58300 | 0.0 | - |
|
1389 |
+
| 0.9327 | 58350 | 0.0 | - |
|
1390 |
+
| 0.9335 | 58400 | 0.0 | - |
|
1391 |
+
| 0.9343 | 58450 | 0.0 | - |
|
1392 |
+
| 0.9351 | 58500 | 0.0 | - |
|
1393 |
+
| 0.9359 | 58550 | 0.0 | - |
|
1394 |
+
| 0.9367 | 58600 | 0.0 | - |
|
1395 |
+
| 0.9375 | 58650 | 0.0 | - |
|
1396 |
+
| 0.9383 | 58700 | 0.0 | - |
|
1397 |
+
| 0.9391 | 58750 | 0.0 | - |
|
1398 |
+
| 0.9399 | 58800 | 0.0 | - |
|
1399 |
+
| 0.9407 | 58850 | 0.0 | - |
|
1400 |
+
| 0.9415 | 58900 | 0.0 | - |
|
1401 |
+
| 0.9423 | 58950 | 0.0 | - |
|
1402 |
+
| 0.9430 | 59000 | 0.0 | - |
|
1403 |
+
| 0.9438 | 59050 | 0.0 | - |
|
1404 |
+
| 0.9446 | 59100 | 0.0 | - |
|
1405 |
+
| 0.9454 | 59150 | 0.0 | - |
|
1406 |
+
| 0.9462 | 59200 | 0.0 | - |
|
1407 |
+
| 0.9470 | 59250 | 0.0 | - |
|
1408 |
+
| 0.9478 | 59300 | 0.0 | - |
|
1409 |
+
| 0.9486 | 59350 | 0.0 | - |
|
1410 |
+
| 0.9494 | 59400 | 0.0 | - |
|
1411 |
+
| 0.9502 | 59450 | 0.0 | - |
|
1412 |
+
| 0.9510 | 59500 | 0.0 | - |
|
1413 |
+
| 0.9518 | 59550 | 0.0 | - |
|
1414 |
+
| 0.9526 | 59600 | 0.0 | - |
|
1415 |
+
| 0.9534 | 59650 | 0.0 | - |
|
1416 |
+
| 0.9542 | 59700 | 0.0 | - |
|
1417 |
+
| 0.9550 | 59750 | 0.0 | - |
|
1418 |
+
| 0.9558 | 59800 | 0.0 | - |
|
1419 |
+
| 0.9566 | 59850 | 0.0 | - |
|
1420 |
+
| 0.9574 | 59900 | 0.0 | - |
|
1421 |
+
| 0.9582 | 59950 | 0.0 | - |
|
1422 |
+
| 0.9590 | 60000 | 0.0 | - |
|
1423 |
+
| 0.9598 | 60050 | 0.0 | - |
|
1424 |
+
| 0.9606 | 60100 | 0.0 | - |
|
1425 |
+
| 0.9614 | 60150 | 0.0 | - |
|
1426 |
+
| 0.9622 | 60200 | 0.0 | - |
|
1427 |
+
| 0.9630 | 60250 | 0.0 | - |
|
1428 |
+
| 0.9638 | 60300 | 0.0 | - |
|
1429 |
+
| 0.9646 | 60350 | 0.0 | - |
|
1430 |
+
| 0.9654 | 60400 | 0.0 | - |
|
1431 |
+
| 0.9662 | 60450 | 0.0 | - |
|
1432 |
+
| 0.9670 | 60500 | 0.0 | - |
|
1433 |
+
| 0.9678 | 60550 | 0.0 | - |
|
1434 |
+
| 0.9686 | 60600 | 0.0 | - |
|
1435 |
+
| 0.9694 | 60650 | 0.0 | - |
|
1436 |
+
| 0.9702 | 60700 | 0.0 | - |
|
1437 |
+
| 0.9710 | 60750 | 0.0 | - |
|
1438 |
+
| 0.9718 | 60800 | 0.0 | - |
|
1439 |
+
| 0.9726 | 60850 | 0.0 | - |
|
1440 |
+
| 0.9734 | 60900 | 0.0 | - |
|
1441 |
+
| 0.9742 | 60950 | 0.0 | - |
|
1442 |
+
| 0.9750 | 61000 | 0.0 | - |
|
1443 |
+
| 0.9758 | 61050 | 0.0 | - |
|
1444 |
+
| 0.9766 | 61100 | 0.0 | - |
|
1445 |
+
| 0.9774 | 61150 | 0.0 | - |
|
1446 |
+
| 0.9782 | 61200 | 0.0 | - |
|
1447 |
+
| 0.9790 | 61250 | 0.0 | - |
|
1448 |
+
| 0.9798 | 61300 | 0.0 | - |
|
1449 |
+
| 0.9806 | 61350 | 0.0 | - |
|
1450 |
+
| 0.9814 | 61400 | 0.0 | - |
|
1451 |
+
| 0.9822 | 61450 | 0.0 | - |
|
1452 |
+
| 0.9830 | 61500 | 0.0 | - |
|
1453 |
+
| 0.9838 | 61550 | 0.0 | - |
|
1454 |
+
| 0.9846 | 61600 | 0.0 | - |
|
1455 |
+
| 0.9854 | 61650 | 0.0 | - |
|
1456 |
+
| 0.9862 | 61700 | 0.0 | - |
|
1457 |
+
| 0.9870 | 61750 | 0.0 | - |
|
1458 |
+
| 0.9878 | 61800 | 0.0 | - |
|
1459 |
+
| 0.9886 | 61850 | 0.0 | - |
|
1460 |
+
| 0.9894 | 61900 | 0.0 | - |
|
1461 |
+
| 0.9902 | 61950 | 0.0 | - |
|
1462 |
+
| 0.9910 | 62000 | 0.0 | - |
|
1463 |
+
| 0.9918 | 62050 | 0.0 | - |
|
1464 |
+
| 0.9926 | 62100 | 0.0 | - |
|
1465 |
+
| 0.9934 | 62150 | 0.0 | - |
|
1466 |
+
| 0.9942 | 62200 | 0.0 | - |
|
1467 |
+
| 0.9950 | 62250 | 0.0 | - |
|
1468 |
+
| 0.9958 | 62300 | 0.0 | - |
|
1469 |
+
| 0.9966 | 62350 | 0.0 | - |
|
1470 |
+
| 0.9974 | 62400 | 0.0 | - |
|
1471 |
+
| 0.9982 | 62450 | 0.0 | - |
|
1472 |
+
| 0.9990 | 62500 | 0.0 | - |
|
1473 |
+
| 0.9998 | 62550 | 0.0 | - |
|
1474 |
+
| 1.0 | 62563 | - | 0.0913 |
|
1475 |
+
|
1476 |
+
### Framework Versions
|
1477 |
+
- Python: 3.12.7
|
1478 |
+
- SetFit: 1.1.0
|
1479 |
+
- Sentence Transformers: 3.3.1
|
1480 |
+
- Transformers: 4.47.0
|
1481 |
+
- PyTorch: 2.5.1+cu124
|
1482 |
+
- Datasets: 3.1.0
|
1483 |
+
- Tokenizers: 0.21.0
|
1484 |
+
|
1485 |
+
## Citation
|
1486 |
+
|
1487 |
+
### BibTeX
|
1488 |
+
```bibtex
|
1489 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
1490 |
+
doi = {10.48550/ARXIV.2209.11055},
|
1491 |
+
url = {https://arxiv.org/abs/2209.11055},
|
1492 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
1493 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
1494 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
1495 |
+
publisher = {arXiv},
|
1496 |
+
year = {2022},
|
1497 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
1498 |
+
}
|
1499 |
+
```
|
1500 |
+
|
1501 |
+
<!--
|
1502 |
+
## Glossary
|
1503 |
+
|
1504 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1505 |
+
-->
|
1506 |
+
|
1507 |
+
<!--
|
1508 |
+
## Model Card Authors
|
1509 |
+
|
1510 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1511 |
+
-->
|
1512 |
+
|
1513 |
+
<!--
|
1514 |
+
## Model Card Contact
|
1515 |
+
|
1516 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1517 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-base-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.47.0",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.47.0",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": [
|
3 |
+
"non-cybersec",
|
4 |
+
"cybersec"
|
5 |
+
],
|
6 |
+
"normalize_embeddings": false
|
7 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32d07ec72c35c443f846cb155ff840b267043c8aee361a43ccc8906766057e25
|
3 |
+
size 437951328
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e075c4eb2c968eebd043984022acc324398ab49cbb38d4fca1a04b386536fc22
|
3 |
+
size 6991
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|