File size: 2,159 Bytes
103e78c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: mit
base_model: indobenchmark/indobert-base-p2
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: psychosis_multi_class
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# psychosis_multi_class
This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5682
- F1: 0.6441
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.243 | 0.67 | 100 | 1.0676 | 0.5384 |
| 1.0062 | 1.34 | 200 | 1.0505 | 0.5805 |
| 0.8763 | 2.01 | 300 | 1.0071 | 0.6036 |
| 0.6782 | 2.68 | 400 | 1.1228 | 0.5779 |
| 0.5557 | 3.36 | 500 | 1.0853 | 0.6163 |
| 0.4344 | 4.03 | 600 | 1.1696 | 0.6108 |
| 0.2665 | 4.7 | 700 | 1.3123 | 0.6098 |
| 0.1992 | 5.37 | 800 | 1.3979 | 0.6186 |
| 0.1142 | 6.04 | 900 | 1.5341 | 0.6401 |
| 0.0643 | 6.71 | 1000 | 1.6514 | 0.6269 |
| 0.0423 | 7.38 | 1100 | 1.7897 | 0.6196 |
| 0.0231 | 8.05 | 1200 | 1.9231 | 0.6063 |
| 0.0184 | 8.72 | 1300 | 1.9370 | 0.6308 |
| 0.0102 | 9.4 | 1400 | 1.9790 | 0.6289 |
### Framework versions
- Transformers 4.34.1
- Pytorch 1.12.1+cu116
- Datasets 2.4.0
- Tokenizers 0.14.1
|