End of training
Browse files
README.md
CHANGED
@@ -6,19 +6,19 @@ tags:
|
|
6 |
metrics:
|
7 |
- accuracy
|
8 |
model-index:
|
9 |
-
- name:
|
10 |
results: []
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
should probably proofread and complete it, then remove this comment. -->
|
15 |
|
16 |
-
#
|
17 |
|
18 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Accuracy: 0.
|
22 |
|
23 |
## Model description
|
24 |
|
@@ -46,62 +46,112 @@ The following hyperparameters were used during training:
|
|
46 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
- lr_scheduler_type: linear
|
48 |
- lr_scheduler_warmup_ratio: 0.1
|
49 |
-
- num_epochs:
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
55 |
-
| 1.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
-
| 0.
|
100 |
-
| 0.
|
101 |
-
| 0.
|
102 |
-
| 0.
|
103 |
-
| 0.
|
104 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
|
107 |
### Framework versions
|
|
|
6 |
metrics:
|
7 |
- accuracy
|
8 |
model-index:
|
9 |
+
- name: FASHION-vision
|
10 |
results: []
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
should probably proofread and complete it, then remove this comment. -->
|
15 |
|
16 |
+
# FASHION-vision
|
17 |
|
18 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.3565
|
21 |
+
- Accuracy: 0.9122
|
22 |
|
23 |
## Model description
|
24 |
|
|
|
46 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
- lr_scheduler_type: linear
|
48 |
- lr_scheduler_warmup_ratio: 0.1
|
49 |
+
- num_epochs: 100
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
55 |
+
| 1.463 | 1.0 | 375 | 1.4452 | 0.7076 |
|
56 |
+
| 0.8341 | 2.0 | 750 | 0.8374 | 0.7926 |
|
57 |
+
| 0.6173 | 3.0 | 1125 | 0.6483 | 0.8257 |
|
58 |
+
| 0.5593 | 4.0 | 1500 | 0.5328 | 0.8436 |
|
59 |
+
| 0.4456 | 5.0 | 1875 | 0.4808 | 0.8488 |
|
60 |
+
| 0.3895 | 6.0 | 2250 | 0.4191 | 0.8617 |
|
61 |
+
| 0.3257 | 7.0 | 2625 | 0.3950 | 0.8638 |
|
62 |
+
| 0.3644 | 8.0 | 3000 | 0.3657 | 0.8733 |
|
63 |
+
| 0.3603 | 9.0 | 3375 | 0.3515 | 0.878 |
|
64 |
+
| 0.3574 | 10.0 | 3750 | 0.3482 | 0.8782 |
|
65 |
+
| 0.2885 | 11.0 | 4125 | 0.3352 | 0.8823 |
|
66 |
+
| 0.3217 | 12.0 | 4500 | 0.3236 | 0.8833 |
|
67 |
+
| 0.2861 | 13.0 | 4875 | 0.3292 | 0.8811 |
|
68 |
+
| 0.263 | 14.0 | 5250 | 0.3083 | 0.8944 |
|
69 |
+
| 0.2265 | 15.0 | 5625 | 0.3035 | 0.8938 |
|
70 |
+
| 0.2407 | 16.0 | 6000 | 0.3094 | 0.8897 |
|
71 |
+
| 0.251 | 17.0 | 6375 | 0.3113 | 0.8894 |
|
72 |
+
| 0.2251 | 18.0 | 6750 | 0.2934 | 0.8951 |
|
73 |
+
| 0.2124 | 19.0 | 7125 | 0.3084 | 0.895 |
|
74 |
+
| 0.1974 | 20.0 | 7500 | 0.3144 | 0.8936 |
|
75 |
+
| 0.1907 | 21.0 | 7875 | 0.3048 | 0.8972 |
|
76 |
+
| 0.1857 | 22.0 | 8250 | 0.3046 | 0.896 |
|
77 |
+
| 0.1696 | 23.0 | 8625 | 0.3014 | 0.8982 |
|
78 |
+
| 0.2066 | 24.0 | 9000 | 0.2943 | 0.8985 |
|
79 |
+
| 0.2106 | 25.0 | 9375 | 0.3057 | 0.8984 |
|
80 |
+
| 0.2036 | 26.0 | 9750 | 0.3103 | 0.8968 |
|
81 |
+
| 0.1629 | 27.0 | 10125 | 0.3100 | 0.9003 |
|
82 |
+
| 0.1711 | 28.0 | 10500 | 0.3112 | 0.8978 |
|
83 |
+
| 0.144 | 29.0 | 10875 | 0.3285 | 0.897 |
|
84 |
+
| 0.1738 | 30.0 | 11250 | 0.3250 | 0.8968 |
|
85 |
+
| 0.1616 | 31.0 | 11625 | 0.3205 | 0.8979 |
|
86 |
+
| 0.1504 | 32.0 | 12000 | 0.3321 | 0.8947 |
|
87 |
+
| 0.1894 | 33.0 | 12375 | 0.3121 | 0.8963 |
|
88 |
+
| 0.1346 | 34.0 | 12750 | 0.3079 | 0.9017 |
|
89 |
+
| 0.1538 | 35.0 | 13125 | 0.3131 | 0.9045 |
|
90 |
+
| 0.1453 | 36.0 | 13500 | 0.3180 | 0.9042 |
|
91 |
+
| 0.1467 | 37.0 | 13875 | 0.3125 | 0.9042 |
|
92 |
+
| 0.1667 | 38.0 | 14250 | 0.3107 | 0.9035 |
|
93 |
+
| 0.1149 | 39.0 | 14625 | 0.3427 | 0.899 |
|
94 |
+
| 0.1248 | 40.0 | 15000 | 0.3152 | 0.9033 |
|
95 |
+
| 0.155 | 41.0 | 15375 | 0.3235 | 0.9015 |
|
96 |
+
| 0.1321 | 42.0 | 15750 | 0.3220 | 0.9065 |
|
97 |
+
| 0.156 | 43.0 | 16125 | 0.3326 | 0.9024 |
|
98 |
+
| 0.1511 | 44.0 | 16500 | 0.3351 | 0.8988 |
|
99 |
+
| 0.1039 | 45.0 | 16875 | 0.3309 | 0.9052 |
|
100 |
+
| 0.1277 | 46.0 | 17250 | 0.3552 | 0.9001 |
|
101 |
+
| 0.1147 | 47.0 | 17625 | 0.3462 | 0.9032 |
|
102 |
+
| 0.13 | 48.0 | 18000 | 0.3374 | 0.9009 |
|
103 |
+
| 0.1348 | 49.0 | 18375 | 0.3475 | 0.9006 |
|
104 |
+
| 0.1188 | 50.0 | 18750 | 0.3419 | 0.9067 |
|
105 |
+
| 0.1532 | 51.0 | 19125 | 0.3444 | 0.9025 |
|
106 |
+
| 0.1173 | 52.0 | 19500 | 0.3387 | 0.9034 |
|
107 |
+
| 0.1189 | 53.0 | 19875 | 0.3407 | 0.9033 |
|
108 |
+
| 0.13 | 54.0 | 20250 | 0.3614 | 0.9016 |
|
109 |
+
| 0.1206 | 55.0 | 20625 | 0.3404 | 0.9047 |
|
110 |
+
| 0.0989 | 56.0 | 21000 | 0.3560 | 0.903 |
|
111 |
+
| 0.1036 | 57.0 | 21375 | 0.3462 | 0.9056 |
|
112 |
+
| 0.1095 | 58.0 | 21750 | 0.3497 | 0.9031 |
|
113 |
+
| 0.143 | 59.0 | 22125 | 0.3364 | 0.9064 |
|
114 |
+
| 0.0889 | 60.0 | 22500 | 0.3544 | 0.9047 |
|
115 |
+
| 0.1008 | 61.0 | 22875 | 0.3510 | 0.904 |
|
116 |
+
| 0.1343 | 62.0 | 23250 | 0.3461 | 0.9069 |
|
117 |
+
| 0.1019 | 63.0 | 23625 | 0.3365 | 0.9058 |
|
118 |
+
| 0.1125 | 64.0 | 24000 | 0.3372 | 0.9086 |
|
119 |
+
| 0.143 | 65.0 | 24375 | 0.3433 | 0.9072 |
|
120 |
+
| 0.0971 | 66.0 | 24750 | 0.3390 | 0.9102 |
|
121 |
+
| 0.1147 | 67.0 | 25125 | 0.3493 | 0.9091 |
|
122 |
+
| 0.0931 | 68.0 | 25500 | 0.3469 | 0.9093 |
|
123 |
+
| 0.1127 | 69.0 | 25875 | 0.3421 | 0.9069 |
|
124 |
+
| 0.0935 | 70.0 | 26250 | 0.3535 | 0.9058 |
|
125 |
+
| 0.1152 | 71.0 | 26625 | 0.3313 | 0.9093 |
|
126 |
+
| 0.1288 | 72.0 | 27000 | 0.3661 | 0.9069 |
|
127 |
+
| 0.1244 | 73.0 | 27375 | 0.3405 | 0.9103 |
|
128 |
+
| 0.1158 | 74.0 | 27750 | 0.3345 | 0.9104 |
|
129 |
+
| 0.1255 | 75.0 | 28125 | 0.3367 | 0.9091 |
|
130 |
+
| 0.0886 | 76.0 | 28500 | 0.3657 | 0.9096 |
|
131 |
+
| 0.1008 | 77.0 | 28875 | 0.3468 | 0.9086 |
|
132 |
+
| 0.1209 | 78.0 | 29250 | 0.3489 | 0.9096 |
|
133 |
+
| 0.0944 | 79.0 | 29625 | 0.3511 | 0.9058 |
|
134 |
+
| 0.0928 | 80.0 | 30000 | 0.3509 | 0.9097 |
|
135 |
+
| 0.0932 | 81.0 | 30375 | 0.3485 | 0.9097 |
|
136 |
+
| 0.0973 | 82.0 | 30750 | 0.3584 | 0.9075 |
|
137 |
+
| 0.0964 | 83.0 | 31125 | 0.3459 | 0.9107 |
|
138 |
+
| 0.1262 | 84.0 | 31500 | 0.3648 | 0.9107 |
|
139 |
+
| 0.113 | 85.0 | 31875 | 0.3483 | 0.9083 |
|
140 |
+
| 0.0828 | 86.0 | 32250 | 0.3396 | 0.9116 |
|
141 |
+
| 0.1104 | 87.0 | 32625 | 0.3370 | 0.9119 |
|
142 |
+
| 0.0804 | 88.0 | 33000 | 0.3596 | 0.9117 |
|
143 |
+
| 0.0905 | 89.0 | 33375 | 0.3538 | 0.912 |
|
144 |
+
| 0.1064 | 90.0 | 33750 | 0.3497 | 0.9112 |
|
145 |
+
| 0.0917 | 91.0 | 34125 | 0.3392 | 0.9139 |
|
146 |
+
| 0.0813 | 92.0 | 34500 | 0.3561 | 0.9109 |
|
147 |
+
| 0.074 | 93.0 | 34875 | 0.3475 | 0.9098 |
|
148 |
+
| 0.0922 | 94.0 | 35250 | 0.3482 | 0.9114 |
|
149 |
+
| 0.0752 | 95.0 | 35625 | 0.3751 | 0.9097 |
|
150 |
+
| 0.0751 | 96.0 | 36000 | 0.3530 | 0.9103 |
|
151 |
+
| 0.0818 | 97.0 | 36375 | 0.3477 | 0.9137 |
|
152 |
+
| 0.0677 | 98.0 | 36750 | 0.3495 | 0.9115 |
|
153 |
+
| 0.0838 | 99.0 | 37125 | 0.3533 | 0.9114 |
|
154 |
+
| 0.0772 | 100.0 | 37500 | 0.3565 | 0.9122 |
|
155 |
|
156 |
|
157 |
### Framework versions
|