End of training
Browse files
README.md
CHANGED
@@ -17,8 +17,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Accuracy: 0.
|
22 |
|
23 |
## Model description
|
24 |
|
@@ -38,23 +38,70 @@ More information needed
|
|
38 |
|
39 |
The following hyperparameters were used during training:
|
40 |
- learning_rate: 5e-05
|
41 |
-
- train_batch_size:
|
42 |
-
- eval_batch_size:
|
43 |
- seed: 42
|
44 |
- gradient_accumulation_steps: 4
|
45 |
-
- total_train_batch_size:
|
46 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
- lr_scheduler_type: linear
|
48 |
- lr_scheduler_warmup_ratio: 0.1
|
49 |
-
- num_epochs:
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
-
| Training Loss | Epoch | Step
|
54 |
-
|
55 |
-
|
|
56 |
-
| 0.
|
57 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
|
60 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.3052
|
21 |
+
- Accuracy: 0.9113
|
22 |
|
23 |
## Model description
|
24 |
|
|
|
38 |
|
39 |
The following hyperparameters were used during training:
|
40 |
- learning_rate: 5e-05
|
41 |
+
- train_batch_size: 32
|
42 |
+
- eval_batch_size: 32
|
43 |
- seed: 42
|
44 |
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 128
|
46 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
- lr_scheduler_type: linear
|
48 |
- lr_scheduler_warmup_ratio: 0.1
|
49 |
+
- num_epochs: 50
|
50 |
|
51 |
### Training results
|
52 |
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
55 |
+
| 1.0436 | 1.0 | 375 | 1.0302 | 0.7701 |
|
56 |
+
| 0.6703 | 2.0 | 750 | 0.6180 | 0.8448 |
|
57 |
+
| 0.5315 | 3.0 | 1125 | 0.5132 | 0.8509 |
|
58 |
+
| 0.4074 | 4.0 | 1500 | 0.4185 | 0.8671 |
|
59 |
+
| 0.3998 | 5.0 | 1875 | 0.3854 | 0.8705 |
|
60 |
+
| 0.3436 | 6.0 | 2250 | 0.3563 | 0.8778 |
|
61 |
+
| 0.3501 | 7.0 | 2625 | 0.3156 | 0.888 |
|
62 |
+
| 0.3284 | 8.0 | 3000 | 0.3145 | 0.8932 |
|
63 |
+
| 0.3123 | 9.0 | 3375 | 0.3207 | 0.888 |
|
64 |
+
| 0.2989 | 10.0 | 3750 | 0.3059 | 0.8939 |
|
65 |
+
| 0.259 | 11.0 | 4125 | 0.2933 | 0.898 |
|
66 |
+
| 0.2115 | 12.0 | 4500 | 0.3067 | 0.8931 |
|
67 |
+
| 0.2928 | 13.0 | 4875 | 0.2869 | 0.8966 |
|
68 |
+
| 0.2398 | 14.0 | 5250 | 0.2865 | 0.8989 |
|
69 |
+
| 0.2187 | 15.0 | 5625 | 0.2955 | 0.9005 |
|
70 |
+
| 0.2335 | 16.0 | 6000 | 0.2814 | 0.8998 |
|
71 |
+
| 0.2165 | 17.0 | 6375 | 0.2863 | 0.8998 |
|
72 |
+
| 0.2092 | 18.0 | 6750 | 0.2912 | 0.9022 |
|
73 |
+
| 0.2002 | 19.0 | 7125 | 0.2769 | 0.9025 |
|
74 |
+
| 0.163 | 20.0 | 7500 | 0.2906 | 0.9029 |
|
75 |
+
| 0.1795 | 21.0 | 7875 | 0.2832 | 0.9065 |
|
76 |
+
| 0.1568 | 22.0 | 8250 | 0.2908 | 0.8972 |
|
77 |
+
| 0.1815 | 23.0 | 8625 | 0.2913 | 0.9055 |
|
78 |
+
| 0.158 | 24.0 | 9000 | 0.2926 | 0.9057 |
|
79 |
+
| 0.1672 | 25.0 | 9375 | 0.2810 | 0.9056 |
|
80 |
+
| 0.1846 | 26.0 | 9750 | 0.2894 | 0.9032 |
|
81 |
+
| 0.1599 | 27.0 | 10125 | 0.3073 | 0.9025 |
|
82 |
+
| 0.1547 | 28.0 | 10500 | 0.2990 | 0.9045 |
|
83 |
+
| 0.1342 | 29.0 | 10875 | 0.2938 | 0.9093 |
|
84 |
+
| 0.1594 | 30.0 | 11250 | 0.2949 | 0.9058 |
|
85 |
+
| 0.1582 | 31.0 | 11625 | 0.3076 | 0.9037 |
|
86 |
+
| 0.1453 | 32.0 | 12000 | 0.2888 | 0.9086 |
|
87 |
+
| 0.1643 | 33.0 | 12375 | 0.3031 | 0.9074 |
|
88 |
+
| 0.1064 | 34.0 | 12750 | 0.3045 | 0.9046 |
|
89 |
+
| 0.1661 | 35.0 | 13125 | 0.2968 | 0.909 |
|
90 |
+
| 0.1345 | 36.0 | 13500 | 0.3027 | 0.9105 |
|
91 |
+
| 0.1359 | 37.0 | 13875 | 0.3123 | 0.9069 |
|
92 |
+
| 0.1261 | 38.0 | 14250 | 0.3079 | 0.9073 |
|
93 |
+
| 0.1347 | 39.0 | 14625 | 0.3095 | 0.9095 |
|
94 |
+
| 0.1364 | 40.0 | 15000 | 0.3020 | 0.9083 |
|
95 |
+
| 0.108 | 41.0 | 15375 | 0.2934 | 0.9117 |
|
96 |
+
| 0.1269 | 42.0 | 15750 | 0.3050 | 0.9125 |
|
97 |
+
| 0.1187 | 43.0 | 16125 | 0.3144 | 0.9103 |
|
98 |
+
| 0.11 | 44.0 | 16500 | 0.3073 | 0.9072 |
|
99 |
+
| 0.113 | 45.0 | 16875 | 0.3125 | 0.9109 |
|
100 |
+
| 0.0935 | 46.0 | 17250 | 0.3088 | 0.9129 |
|
101 |
+
| 0.1287 | 47.0 | 17625 | 0.3085 | 0.9139 |
|
102 |
+
| 0.1186 | 48.0 | 18000 | 0.3069 | 0.9118 |
|
103 |
+
| 0.1353 | 49.0 | 18375 | 0.3205 | 0.9117 |
|
104 |
+
| 0.1122 | 50.0 | 18750 | 0.3052 | 0.9113 |
|
105 |
|
106 |
|
107 |
### Framework versions
|