--- language: en tags: - Text Classification - TDAMM - Multi-label Classification - NASA - Astrophysics base_model: - adsabs/astroBERT library_name: transformers license: apache-2.0 --- # TDAMM Multi-Label Classification Model The TDAMM (Time Domain Multi-Messenger Astronomy) model is created to categorize NASA’s time domain multi-messenger resources into one or more of 36 distinct categories identified by subject matter experts (SMEs) ## Model Description - **Base Model:** astroBERT, fine-tuned for multi-label classification - **Task:** Multi-label classification - **Training Data:** A collection of 408 NASA and non-NASA documents related to TDAMM topics identified by SMEs ## Data Distribution Distribution 1 Distribution 2 Distribution 3 ## Performance Analysis Threshold 1 ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch tokenizer = AutoTokenizer.from_pretrained("nasa-impact/tdamm-classification") model = AutoModelForSequenceClassification.from_pretrained("nasa-impact/tdamm-classification") # Prepare input text = "Your astronomical test text here" inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512) # Get predictions with torch.no_grad(): outputs = model(**inputs) predictions = torch.sigmoid(outputs.logits) # Convert to binary predictions (threshold = 0.5) predictions = (predictions > 0.5).int() ``` ## Label Mapping During Inference After obtaining predictions from the model, we can map the predicted label indices to their actual names using the `model.config.id2label` dictionary ```python # Example usage predicted_indices = [0, 2, 5] predicted_labels = [model.config.id2label[idx] for idx in predicted_indices] print(predicted_labels) ```