File size: 2,432 Bytes
e052ce1 51173a9 e052ce1 51173a9 e052ce1 7993745 e052ce1 aabefd5 e052ce1 51173a9 e052ce1 51173a9 4b9cab4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large-cnn-finetuned-scope-summarization
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-cnn-finetuned-scope-summarization
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1120
- Rouge1: 51.232
- Rouge2: 37.3103
- Rougel: 39.2783
- Rougelsum: 39.2011
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 0.6379 | 1.0 | 40 | 0.2289 | 45.9991 | 29.5151 | 34.3864 | 34.3984 |
| 0.2731 | 2.0 | 80 | 0.1935 | 47.3991 | 33.1933 | 38.1538 | 38.0514 |
| 0.2362 | 3.0 | 120 | 0.1734 | 47.4125 | 32.2496 | 35.7852 | 35.8279 |
| 0.222 | 4.0 | 160 | 0.1665 | 46.2226 | 32.0249 | 37.016 | 36.8941 |
| 0.2005 | 5.0 | 200 | 0.1530 | 50.1647 | 35.1015 | 39.0526 | 39.0721 |
| 0.1971 | 6.0 | 240 | 0.1434 | 49.7914 | 35.5371 | 39.2372 | 39.244 |
| 0.1754 | 7.0 | 280 | 0.1286 | 49.8482 | 35.7536 | 40.2412 | 40.2248 |
| 0.1777 | 8.0 | 320 | 0.1187 | 51.6342 | 38.223 | 41.4109 | 41.3626 |
| 0.1555 | 9.0 | 360 | 0.1149 | 49.1858 | 36.1404 | 38.857 | 38.7268 |
| 0.1415 | 10.0 | 400 | 0.1120 | 51.232 | 37.3103 | 39.2783 | 39.2011 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.2.0+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1
|