nanalysenko commited on
Commit
76bb89f
·
verified ·
1 Parent(s): 8f5bac5

Upload 12 files

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,378 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ai-forever/ruRoberta-large
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:6500
13
+ - loss:MultipleNegativesRankingLoss
14
+ widget:
15
+ - source_sentence: Цитологическое исследование пунктата кожи
16
+ sentences:
17
+ - Цитологическая диагностика поражения кожи, исследование соскобов и отпечатков
18
+ эрозий, ран, свищей
19
+ - Панель аллергенов деревьев № 2 IgE (клен ясенелистный, тополь, вяз, дуб, пекан),
20
+ - Панель аллергенов деревьев № 1 IgE (клен ясенелистный, береза, вяз, дуб, грецкий
21
+ орех),
22
+ - source_sentence: 12.4.3.06 Аллерген f222 - чай листовой, IgE (ImmunoCAP)
23
+ sentences:
24
+ - Панель аллергенов трав № 1 IgE (ежа сборная, овсяница луговая, рожь многолетняя,
25
+ тимофеевка, мятлик луговой),
26
+ - Панель аллергенов животных/перья птиц/ № 72 IgE (перо волнистого попугая, перо
27
+ попугая, перо канарейки),
28
+ - Панель аллергенов животных/перья птиц/ № 71 IgE (перо гуся, перо курицы, перо
29
+ утки, перо индюка),
30
+ - source_sentence: Общий анализ крови без лейкоцитарной формулы
31
+ sentences:
32
+ - Железо ,
33
+ - Панель ингаляционных аллергенов № 1 IgE (ежасборная, тимофеевка, японский кедр,
34
+ амброзия обыкновенная, полыньобыкновенная),
35
+ - Панель аллергенов трав № 3 IgE (колосок душистый, рожь многолетняя, тимофеевка,
36
+ рожь культивированная, бухарник шерстистый),
37
+ - source_sentence: 12.01.04 Аллергокомпонент f233 - овомукоид яйца nGal d1, IgE (ImmunoCAP)
38
+ sentences:
39
+ - Антистрептолизин-0 Asl-0
40
+ - Панель аллергенов сорных растений и цветов № 5 IgE (амброзия обыкновенная, полынь
41
+ обыкновенная, золотарник, нивяник, одуванчик лекарственный),
42
+ - Панель профессиональных аллергенов № 1 IgE перхоть лошади, перхоть коровы, перо
43
+ гуся, перо курицы,
44
+ - source_sentence: ДНК вируса папиломы человека ВКР генотип (количественный) соскоб
45
+ sentences:
46
+ - ДНК Human Papillomavirus высокого канцерогенного риска (16, 18, 31, 33, 35, 39,
47
+ 45, 51, 52, 56, 58, 59 типов) с определением типа
48
+ - Панель ингаляционных аллергенов № 8 IgE (эпителий кошки, клещ-дерматофаг перинный,
49
+ береза, перхоть собаки, полынь обыкновенная, тимофеевка, рожь культивированная,
50
+ плесневый гриб (Cladosporum herbarum)),
51
+ - Панель ингаляционных аллергенов № 9 IgE (эпителий кошки, перхоть собаки, овсяница
52
+ луговая, плесневый гриб (Alternaria tenuis), подорожник)
53
+ ---
54
+
55
+ # SentenceTransformer based on ai-forever/ruRoberta-large
56
+
57
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [ai-forever/ruRoberta-large](https://huggingface.co/ai-forever/ruRoberta-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
58
+
59
+ ## Model Details
60
+
61
+ ### Model Description
62
+ - **Model Type:** Sentence Transformer
63
+ - **Base model:** [ai-forever/ruRoberta-large](https://huggingface.co/ai-forever/ruRoberta-large) <!-- at revision 5192d064ca6ac67c14c40e017ce41612e010f05f -->
64
+ - **Maximum Sequence Length:** 514 tokens
65
+ - **Output Dimensionality:** 1024 tokens
66
+ - **Similarity Function:** Cosine Similarity
67
+ <!-- - **Training Dataset:** Unknown -->
68
+ <!-- - **Language:** Unknown -->
69
+ <!-- - **License:** Unknown -->
70
+
71
+ ### Model Sources
72
+
73
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
74
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
75
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
76
+
77
+ ### Full Model Architecture
78
+
79
+ ```
80
+ SentenceTransformer(
81
+ (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel
82
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
83
+ )
84
+ ```
85
+
86
+ ## Usage
87
+
88
+ ### Direct Usage (Sentence Transformers)
89
+
90
+ First install the Sentence Transformers library:
91
+
92
+ ```bash
93
+ pip install -U sentence-transformers
94
+ ```
95
+
96
+ Then you can load this model and run inference.
97
+ ```python
98
+ from sentence_transformers import SentenceTransformer
99
+
100
+ # Download from the 🤗 Hub
101
+ model = SentenceTransformer("sentence_transformers_model_id")
102
+ # Run inference
103
+ sentences = [
104
+ 'ДНК вируса папиломы человека ВКР генотип (количественный) соскоб',
105
+ 'ДНК Human Papillomavirus высокого канцерогенного риска (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 типов) с определением типа',
106
+ 'Панель ингаляционных аллергенов № 9 IgE (эпителий кошки, перхоть собаки, овсяница луговая, плесневый гриб (Alternaria tenuis), подорожник)',
107
+ ]
108
+ embeddings = model.encode(sentences)
109
+ print(embeddings.shape)
110
+ # [3, 1024]
111
+
112
+ # Get the similarity scores for the embeddings
113
+ similarities = model.similarity(embeddings, embeddings)
114
+ print(similarities.shape)
115
+ # [3, 3]
116
+ ```
117
+
118
+ <!--
119
+ ### Direct Usage (Transformers)
120
+
121
+ <details><summary>Click to see the direct usage in Transformers</summary>
122
+
123
+ </details>
124
+ -->
125
+
126
+ <!--
127
+ ### Downstream Usage (Sentence Transformers)
128
+
129
+ You can finetune this model on your own dataset.
130
+
131
+ <details><summary>Click to expand</summary>
132
+
133
+ </details>
134
+ -->
135
+
136
+ <!--
137
+ ### Out-of-Scope Use
138
+
139
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
140
+ -->
141
+
142
+ <!--
143
+ ## Bias, Risks and Limitations
144
+
145
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
146
+ -->
147
+
148
+ <!--
149
+ ### Recommendations
150
+
151
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
152
+ -->
153
+
154
+ ## Training Details
155
+
156
+ ### Training Dataset
157
+
158
+ #### Unnamed Dataset
159
+
160
+
161
+ * Size: 6,500 training samples
162
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
163
+ * Approximate statistics based on the first 1000 samples:
164
+ | | sentence_0 | sentence_1 |
165
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
166
+ | type | string | string |
167
+ | details | <ul><li>min: 6 tokens</li><li>mean: 33.15 tokens</li><li>max: 73 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 36.66 tokens</li><li>max: 75 tokens</li></ul> |
168
+ * Samples:
169
+ | sentence_0 | sentence_1 |
170
+ |:---------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------|
171
+ | <code>12.01.14 Аллергокомпонент f76 - альфа-лактальбумин nBos d 4, IgE (ImmunoCAP)</code> | <code>Панель аллергенов деревьев № 5 IgE (oльха, лещина обыкновенная, вяз, ива, тополь),</code> |
172
+ | <code>нет до 18.12 12.02.2.00 Панель "профессиональных" аллергенов № 1 (IgE): перхоть лошади, перхоть коровы, перо гуся, перо курицы</code> | <code>Панель профессиональных аллергенов № 1 IgE перхоть лошади, перхоть коровы, перо гуся, перо курицы,</code> |
173
+ | <code>12.4.7.21 Аллерген f212 - Грибы (шампиньоны)/Agaricus hortensis, IgE (ImmunoCAP)</code> | <code>Панель аллергенов деревьев № 5 IgE (oльха, лещина обыкновенная, вяз, ива, тополь),</code> |
174
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
175
+ ```json
176
+ {
177
+ "scale": 20.0,
178
+ "similarity_fct": "cos_sim"
179
+ }
180
+ ```
181
+
182
+ ### Training Hyperparameters
183
+ #### Non-Default Hyperparameters
184
+
185
+ - `num_train_epochs`: 11
186
+ - `multi_dataset_batch_sampler`: round_robin
187
+
188
+ #### All Hyperparameters
189
+ <details><summary>Click to expand</summary>
190
+
191
+ - `overwrite_output_dir`: False
192
+ - `do_predict`: False
193
+ - `eval_strategy`: no
194
+ - `prediction_loss_only`: True
195
+ - `per_device_train_batch_size`: 8
196
+ - `per_device_eval_batch_size`: 8
197
+ - `per_gpu_train_batch_size`: None
198
+ - `per_gpu_eval_batch_size`: None
199
+ - `gradient_accumulation_steps`: 1
200
+ - `eval_accumulation_steps`: None
201
+ - `learning_rate`: 5e-05
202
+ - `weight_decay`: 0.0
203
+ - `adam_beta1`: 0.9
204
+ - `adam_beta2`: 0.999
205
+ - `adam_epsilon`: 1e-08
206
+ - `max_grad_norm`: 1
207
+ - `num_train_epochs`: 11
208
+ - `max_steps`: -1
209
+ - `lr_scheduler_type`: linear
210
+ - `lr_scheduler_kwargs`: {}
211
+ - `warmup_ratio`: 0.0
212
+ - `warmup_steps`: 0
213
+ - `log_level`: passive
214
+ - `log_level_replica`: warning
215
+ - `log_on_each_node`: True
216
+ - `logging_nan_inf_filter`: True
217
+ - `save_safetensors`: True
218
+ - `save_on_each_node`: False
219
+ - `save_only_model`: False
220
+ - `restore_callback_states_from_checkpoint`: False
221
+ - `no_cuda`: False
222
+ - `use_cpu`: False
223
+ - `use_mps_device`: False
224
+ - `seed`: 42
225
+ - `data_seed`: None
226
+ - `jit_mode_eval`: False
227
+ - `use_ipex`: False
228
+ - `bf16`: False
229
+ - `fp16`: False
230
+ - `fp16_opt_level`: O1
231
+ - `half_precision_backend`: auto
232
+ - `bf16_full_eval`: False
233
+ - `fp16_full_eval`: False
234
+ - `tf32`: None
235
+ - `local_rank`: 0
236
+ - `ddp_backend`: None
237
+ - `tpu_num_cores`: None
238
+ - `tpu_metrics_debug`: False
239
+ - `debug`: []
240
+ - `dataloader_drop_last`: False
241
+ - `dataloader_num_workers`: 0
242
+ - `dataloader_prefetch_factor`: None
243
+ - `past_index`: -1
244
+ - `disable_tqdm`: False
245
+ - `remove_unused_columns`: True
246
+ - `label_names`: None
247
+ - `load_best_model_at_end`: False
248
+ - `ignore_data_skip`: False
249
+ - `fsdp`: []
250
+ - `fsdp_min_num_params`: 0
251
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
252
+ - `fsdp_transformer_layer_cls_to_wrap`: None
253
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
254
+ - `deepspeed`: None
255
+ - `label_smoothing_factor`: 0.0
256
+ - `optim`: adamw_torch
257
+ - `optim_args`: None
258
+ - `adafactor`: False
259
+ - `group_by_length`: False
260
+ - `length_column_name`: length
261
+ - `ddp_find_unused_parameters`: None
262
+ - `ddp_bucket_cap_mb`: None
263
+ - `ddp_broadcast_buffers`: False
264
+ - `dataloader_pin_memory`: True
265
+ - `dataloader_persistent_workers`: False
266
+ - `skip_memory_metrics`: True
267
+ - `use_legacy_prediction_loop`: False
268
+ - `push_to_hub`: False
269
+ - `resume_from_checkpoint`: None
270
+ - `hub_model_id`: None
271
+ - `hub_strategy`: every_save
272
+ - `hub_private_repo`: False
273
+ - `hub_always_push`: False
274
+ - `gradient_checkpointing`: False
275
+ - `gradient_checkpointing_kwargs`: None
276
+ - `include_inputs_for_metrics`: False
277
+ - `eval_do_concat_batches`: True
278
+ - `fp16_backend`: auto
279
+ - `push_to_hub_model_id`: None
280
+ - `push_to_hub_organization`: None
281
+ - `mp_parameters`:
282
+ - `auto_find_batch_size`: False
283
+ - `full_determinism`: False
284
+ - `torchdynamo`: None
285
+ - `ray_scope`: last
286
+ - `ddp_timeout`: 1800
287
+ - `torch_compile`: False
288
+ - `torch_compile_backend`: None
289
+ - `torch_compile_mode`: None
290
+ - `dispatch_batches`: None
291
+ - `split_batches`: None
292
+ - `include_tokens_per_second`: False
293
+ - `include_num_input_tokens_seen`: False
294
+ - `neftune_noise_alpha`: None
295
+ - `optim_target_modules`: None
296
+ - `batch_eval_metrics`: False
297
+ - `batch_sampler`: batch_sampler
298
+ - `multi_dataset_batch_sampler`: round_robin
299
+
300
+ </details>
301
+
302
+ ### Training Logs
303
+ | Epoch | Step | Training Loss |
304
+ |:-------:|:----:|:-------------:|
305
+ | 0.6150 | 500 | 1.6066 |
306
+ | 1.2300 | 1000 | 1.5108 |
307
+ | 1.8450 | 1500 | 1.4851 |
308
+ | 2.4600 | 2000 | 1.4971 |
309
+ | 3.0750 | 2500 | 1.5269 |
310
+ | 3.6900 | 3000 | 1.5257 |
311
+ | 4.3050 | 3500 | 1.4807 |
312
+ | 4.9200 | 4000 | 1.4484 |
313
+ | 5.5351 | 4500 | 1.4794 |
314
+ | 6.1501 | 5000 | 1.4514 |
315
+ | 6.7651 | 5500 | 1.4552 |
316
+ | 7.3801 | 6000 | 1.483 |
317
+ | 7.9951 | 6500 | 1.4573 |
318
+ | 8.6101 | 7000 | 1.4676 |
319
+ | 9.2251 | 7500 | 1.4458 |
320
+ | 9.8401 | 8000 | 1.449 |
321
+ | 10.4551 | 8500 | 1.4683 |
322
+
323
+
324
+ ### Framework Versions
325
+ - Python: 3.10.12
326
+ - Sentence Transformers: 3.0.1
327
+ - Transformers: 4.41.2
328
+ - PyTorch: 2.3.0+cu121
329
+ - Accelerate: 0.31.0
330
+ - Datasets: 2.20.0
331
+ - Tokenizers: 0.19.1
332
+
333
+ ## Citation
334
+
335
+ ### BibTeX
336
+
337
+ #### Sentence Transformers
338
+ ```bibtex
339
+ @inproceedings{reimers-2019-sentence-bert,
340
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
341
+ author = "Reimers, Nils and Gurevych, Iryna",
342
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
343
+ month = "11",
344
+ year = "2019",
345
+ publisher = "Association for Computational Linguistics",
346
+ url = "https://arxiv.org/abs/1908.10084",
347
+ }
348
+ ```
349
+
350
+ #### MultipleNegativesRankingLoss
351
+ ```bibtex
352
+ @misc{henderson2017efficient,
353
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
354
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
355
+ year={2017},
356
+ eprint={1705.00652},
357
+ archivePrefix={arXiv},
358
+ primaryClass={cs.CL}
359
+ }
360
+ ```
361
+
362
+ <!--
363
+ ## Glossary
364
+
365
+ *Clearly define terms in order to be accessible across audiences.*
366
+ -->
367
+
368
+ <!--
369
+ ## Model Card Authors
370
+
371
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
372
+ -->
373
+
374
+ <!--
375
+ ## Model Card Contact
376
+
377
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
378
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ai-forever/ruRoberta-large",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 1,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 1024,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 4096,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 16,
20
+ "num_hidden_layers": 24,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.41.2",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 50265
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0a765e366e1dbe953669a72f211d917c4af4e62619dae98c7e42aed1be3c445b
3
+ size 1421483904
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 514,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<pad>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<s>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "4": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 1000000000000000019884624838656,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "RobertaTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": "<unk>"
57
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff