Model save
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/dinov2-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: dinov2-base-finetuned-lora-EA-rank8
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# dinov2-base-finetuned-lora-EA-rank8
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.4365
|
21 |
+
- Accuracy: 0.8233
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0001
|
41 |
+
- train_batch_size: 64
|
42 |
+
- eval_batch_size: 64
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 16
|
45 |
+
- total_train_batch_size: 1024
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: cosine
|
48 |
+
- num_epochs: 15
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|
|
55 |
+
| No log | 0.7805 | 2 | 0.5030 | 0.8142 |
|
56 |
+
| No log | 1.9512 | 5 | 0.4567 | 0.8215 |
|
57 |
+
| No log | 2.7317 | 7 | 0.4511 | 0.8215 |
|
58 |
+
| 0.4811 | 3.9024 | 10 | 0.4438 | 0.8179 |
|
59 |
+
| 0.4811 | 4.6829 | 12 | 0.4392 | 0.8215 |
|
60 |
+
| 0.4811 | 5.8537 | 15 | 0.4379 | 0.8452 |
|
61 |
+
| 0.4811 | 6.6341 | 17 | 0.4365 | 0.8233 |
|
62 |
+
|
63 |
+
|
64 |
+
### Framework versions
|
65 |
+
|
66 |
+
- Transformers 4.41.1
|
67 |
+
- Pytorch 2.1.2
|
68 |
+
- Datasets 2.19.1
|
69 |
+
- Tokenizers 0.19.1
|