Delete dreamvoice/.ipynb_checkpoints/api-checkpoint.py
Browse files
dreamvoice/.ipynb_checkpoints/api-checkpoint.py
DELETED
@@ -1,295 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import requests
|
3 |
-
import yaml
|
4 |
-
import torch
|
5 |
-
import librosa
|
6 |
-
import numpy as np
|
7 |
-
import soundfile as sf
|
8 |
-
from pathlib import Path
|
9 |
-
from transformers import T5Tokenizer, T5EncoderModel
|
10 |
-
from tqdm import tqdm
|
11 |
-
from .src.vc_wrapper import ReDiffVC, DreamVC
|
12 |
-
from .src.plugin_wrapper import DreamVG
|
13 |
-
from .src.modules.speaker_encoder.encoder import inference as spk_encoder
|
14 |
-
from .src.modules.BigVGAN.inference import load_model as load_vocoder
|
15 |
-
from .src.feats.contentvec_hf import get_content_model, get_content
|
16 |
-
|
17 |
-
|
18 |
-
class DreamVoice:
|
19 |
-
def __init__(self, config='dreamvc.yaml', mode='plugin', device='cuda', chunk_size=16):
|
20 |
-
# Initial setup
|
21 |
-
script_dir = Path(__file__).resolve().parent
|
22 |
-
config_path = script_dir / config
|
23 |
-
|
24 |
-
# Load configuration file
|
25 |
-
with open(config_path, 'r') as fp:
|
26 |
-
self.config = yaml.safe_load(fp)
|
27 |
-
|
28 |
-
self.script_dir = script_dir
|
29 |
-
|
30 |
-
# Ensure all checkpoints are downloaded
|
31 |
-
self._ensure_checkpoints_exist()
|
32 |
-
|
33 |
-
# Initialize attributes
|
34 |
-
self.device = device
|
35 |
-
self.sr = self.config['sample_rate']
|
36 |
-
|
37 |
-
# Load vocoder
|
38 |
-
vocoder_path = script_dir / self.config['vocoder_path']
|
39 |
-
self.hifigan, _ = load_vocoder(vocoder_path, device)
|
40 |
-
self.hifigan.eval()
|
41 |
-
|
42 |
-
# Load content model
|
43 |
-
self.content_model = get_content_model().to(device)
|
44 |
-
|
45 |
-
# Load tokenizer and text encoder
|
46 |
-
lm_path = self.config['lm_path']
|
47 |
-
self.tokenizer = T5Tokenizer.from_pretrained(lm_path)
|
48 |
-
self.text_encoder = T5EncoderModel.from_pretrained(lm_path).to(device).eval()
|
49 |
-
|
50 |
-
# Set mode
|
51 |
-
self.mode = mode
|
52 |
-
if mode == 'plugin':
|
53 |
-
self._init_plugin_mode()
|
54 |
-
elif mode == 'end2end':
|
55 |
-
self._init_end2end_mode()
|
56 |
-
else:
|
57 |
-
raise NotImplementedError("Select mode from 'plugin' and 'end2end'")
|
58 |
-
|
59 |
-
# chunk inputs to 10s clips
|
60 |
-
self.chunk_size = chunk_size * 50
|
61 |
-
|
62 |
-
def _ensure_checkpoints_exist(self):
|
63 |
-
checkpoints = [
|
64 |
-
('vocoder_path', self.config.get('vocoder_url')),
|
65 |
-
('vocoder_config_path', self.config.get('vocoder_config_url')),
|
66 |
-
('speaker_path', self.config.get('speaker_url')),
|
67 |
-
('dreamvc.ckpt_path', self.config.get('dreamvc', {}).get('ckpt_url')),
|
68 |
-
('rediffvc.ckpt_path', self.config.get('rediffvc', {}).get('ckpt_url')),
|
69 |
-
('dreamvg.ckpt_path', self.config.get('dreamvg', {}).get('ckpt_url'))
|
70 |
-
]
|
71 |
-
|
72 |
-
for path_key, url in checkpoints:
|
73 |
-
local_path = self._get_local_path(path_key)
|
74 |
-
if not local_path.exists() and url:
|
75 |
-
print(f"Downloading {path_key} from {url}")
|
76 |
-
self._download_file(url, local_path)
|
77 |
-
|
78 |
-
def _get_local_path(self, path_key):
|
79 |
-
keys = path_key.split('.')
|
80 |
-
local_path = self.config
|
81 |
-
for key in keys:
|
82 |
-
local_path = local_path.get(key, {})
|
83 |
-
return self.script_dir / local_path
|
84 |
-
|
85 |
-
def _download_file(self, url, local_path):
|
86 |
-
try:
|
87 |
-
# Attempt to send a GET request to the URL
|
88 |
-
response = requests.get(url, stream=True)
|
89 |
-
response.raise_for_status() # Ensure we raise an exception for HTTP errors
|
90 |
-
except requests.exceptions.RequestException as e:
|
91 |
-
# Log the error for debugging purposes
|
92 |
-
print(f"Error encountered: {e}")
|
93 |
-
|
94 |
-
# Development mode: prompt user for Hugging Face API key
|
95 |
-
user_input = input("Private checkpoint, please request authorization and enter your Hugging Face API key.")
|
96 |
-
self.hf_key = user_input if user_input else None
|
97 |
-
|
98 |
-
# Set headers if an API key is provided
|
99 |
-
headers = {'Authorization': f'Bearer {self.hf_key}'} if self.hf_key else {}
|
100 |
-
|
101 |
-
try:
|
102 |
-
# Attempt to send a GET request with headers in development mode
|
103 |
-
response = requests.get(url, stream=True, headers=headers)
|
104 |
-
response.raise_for_status() # Ensure we raise an exception for HTTP errors
|
105 |
-
except requests.exceptions.RequestException as e:
|
106 |
-
# Log the error for debugging purposes
|
107 |
-
print(f"Error encountered in dev mode: {e}")
|
108 |
-
response = None # Handle response accordingly in your code
|
109 |
-
|
110 |
-
local_path.parent.mkdir(parents=True, exist_ok=True)
|
111 |
-
|
112 |
-
total_size = int(response.headers.get('content-length', 0))
|
113 |
-
block_size = 8192
|
114 |
-
t = tqdm(total=total_size, unit='iB', unit_scale=True)
|
115 |
-
|
116 |
-
with open(local_path, 'wb') as f:
|
117 |
-
for chunk in response.iter_content(chunk_size=block_size):
|
118 |
-
t.update(len(chunk))
|
119 |
-
f.write(chunk)
|
120 |
-
t.close()
|
121 |
-
|
122 |
-
def _init_plugin_mode(self):
|
123 |
-
# Initialize ReDiffVC
|
124 |
-
self.dreamvc = ReDiffVC(
|
125 |
-
config_path=self.script_dir / self.config['rediffvc']['config_path'],
|
126 |
-
ckpt_path=self.script_dir / self.config['rediffvc']['ckpt_path'],
|
127 |
-
device=self.device
|
128 |
-
)
|
129 |
-
|
130 |
-
# Initialize DreamVG
|
131 |
-
self.dreamvg = DreamVG(
|
132 |
-
config_path=self.script_dir / self.config['dreamvg']['config_path'],
|
133 |
-
ckpt_path=self.script_dir / self.config['dreamvg']['ckpt_path'],
|
134 |
-
device=self.device
|
135 |
-
)
|
136 |
-
|
137 |
-
# Load speaker encoder
|
138 |
-
spk_encoder.load_model(self.script_dir / self.config['speaker_path'], self.device)
|
139 |
-
self.spk_encoder = spk_encoder
|
140 |
-
self.spk_embed_cache = None
|
141 |
-
|
142 |
-
def _init_end2end_mode(self):
|
143 |
-
# Initialize DreamVC
|
144 |
-
self.dreamvc = DreamVC(
|
145 |
-
config_path=self.script_dir / self.config['dreamvc']['config_path'],
|
146 |
-
ckpt_path=self.script_dir / self.config['dreamvc']['ckpt_path'],
|
147 |
-
device=self.device
|
148 |
-
)
|
149 |
-
|
150 |
-
def _load_content(self, audio_path):
|
151 |
-
content_audio, _ = librosa.load(audio_path, sr=16000)
|
152 |
-
# Calculate the required length to make it a multiple of 16*160
|
153 |
-
target_length = ((len(content_audio) + 16*160 - 1) // (16*160)) * (16*160)
|
154 |
-
# Pad with zeros if necessary
|
155 |
-
if len(content_audio) < target_length:
|
156 |
-
content_audio = np.pad(content_audio, (0, target_length - len(content_audio)), mode='constant')
|
157 |
-
content_audio = torch.tensor(content_audio).unsqueeze(0).to(self.device)
|
158 |
-
content_clip = get_content(self.content_model, content_audio)
|
159 |
-
return content_clip
|
160 |
-
|
161 |
-
def load_spk_embed(self, emb_path):
|
162 |
-
self.spk_embed_cache = torch.load(emb_path, map_location=self.device)
|
163 |
-
|
164 |
-
def save_spk_embed(self, emb_path):
|
165 |
-
assert self.spk_embed_cache is not None
|
166 |
-
torch.save(self.spk_embed_cache.cpu(), emb_path)
|
167 |
-
|
168 |
-
def save_audio(self, output_path, audio, sr):
|
169 |
-
sf.write(output_path, audio, samplerate=sr)
|
170 |
-
|
171 |
-
@torch.no_grad()
|
172 |
-
def genvc(self, content_audio, prompt,
|
173 |
-
prompt_guidance_scale=3, prompt_guidance_rescale=0.0,
|
174 |
-
prompt_ddim_steps=100, prompt_eta=1, prompt_random_seed=None,
|
175 |
-
vc_guidance_scale=3, vc_guidance_rescale=0.7,
|
176 |
-
vc_ddim_steps=50, vc_eta=1, vc_random_seed=None,
|
177 |
-
):
|
178 |
-
|
179 |
-
content_clip = self._load_content(content_audio)
|
180 |
-
|
181 |
-
text_batch = self.tokenizer(prompt, max_length=32,
|
182 |
-
padding='max_length', truncation=True, return_tensors="pt")
|
183 |
-
text, text_mask = text_batch.input_ids.to(self.device), \
|
184 |
-
text_batch.attention_mask.to(self.device)
|
185 |
-
text = self.text_encoder(input_ids=text, attention_mask=text_mask)[0]
|
186 |
-
|
187 |
-
if self.mode == 'plugin':
|
188 |
-
spk_embed = self.dreamvg.inference([text, text_mask],
|
189 |
-
guidance_scale=prompt_guidance_scale,
|
190 |
-
guidance_rescale=prompt_guidance_rescale,
|
191 |
-
ddim_steps=prompt_ddim_steps, eta=prompt_eta,
|
192 |
-
random_seed=prompt_random_seed)
|
193 |
-
|
194 |
-
B, L, D = content_clip.shape
|
195 |
-
gen_audio_chunks = []
|
196 |
-
num_chunks = (L + self.chunk_size - 1) // self.chunk_size
|
197 |
-
for i in range(num_chunks):
|
198 |
-
start_idx = i * self.chunk_size
|
199 |
-
end_idx = min((i + 1) * self.chunk_size, L)
|
200 |
-
content_clip_chunk = content_clip[:, start_idx:end_idx, :]
|
201 |
-
|
202 |
-
gen_audio_chunk = self.dreamvc.inference(
|
203 |
-
spk_embed, content_clip_chunk, None,
|
204 |
-
guidance_scale=vc_guidance_scale,
|
205 |
-
guidance_rescale=vc_guidance_rescale,
|
206 |
-
ddim_steps=vc_ddim_steps,
|
207 |
-
eta=vc_eta,
|
208 |
-
random_seed=vc_random_seed)
|
209 |
-
|
210 |
-
gen_audio_chunks.append(gen_audio_chunk)
|
211 |
-
|
212 |
-
gen_audio = torch.cat(gen_audio_chunks, dim=-1)
|
213 |
-
|
214 |
-
self.spk_embed_cache = spk_embed
|
215 |
-
|
216 |
-
elif self.mode == 'end2end':
|
217 |
-
B, L, D = content_clip.shape
|
218 |
-
gen_audio_chunks = []
|
219 |
-
num_chunks = (L + self.chunk_size - 1) // self.chunk_size
|
220 |
-
|
221 |
-
for i in range(num_chunks):
|
222 |
-
start_idx = i * self.chunk_size
|
223 |
-
end_idx = min((i + 1) * self.chunk_size, L)
|
224 |
-
content_clip_chunk = content_clip[:, start_idx:end_idx, :]
|
225 |
-
|
226 |
-
gen_audio_chunk = self.dreamvc.inference([text, text_mask], content_clip,
|
227 |
-
guidance_scale=prompt_guidance_scale,
|
228 |
-
guidance_rescale=prompt_guidance_rescale,
|
229 |
-
ddim_steps=prompt_ddim_steps,
|
230 |
-
eta=prompt_eta, random_seed=prompt_random_seed)
|
231 |
-
gen_audio_chunks.append(gen_audio_chunk)
|
232 |
-
|
233 |
-
gen_audio = torch.cat(gen_audio_chunks, dim=-1)
|
234 |
-
|
235 |
-
else:
|
236 |
-
raise NotImplementedError("Select mode from 'plugin' and 'end2end'")
|
237 |
-
|
238 |
-
gen_audio = self.hifigan(gen_audio.squeeze(1))
|
239 |
-
gen_audio = gen_audio.cpu().numpy().squeeze(0).squeeze(0)
|
240 |
-
|
241 |
-
return gen_audio, self.sr
|
242 |
-
|
243 |
-
@torch.no_grad()
|
244 |
-
def simplevc(self, content_audio, speaker_audio=None, use_spk_cache=False,
|
245 |
-
vc_guidance_scale=3, vc_guidance_rescale=0.7,
|
246 |
-
vc_ddim_steps=50, vc_eta=1, vc_random_seed=None,
|
247 |
-
):
|
248 |
-
|
249 |
-
assert self.mode == 'plugin'
|
250 |
-
if speaker_audio is not None:
|
251 |
-
speaker_audio, _ = librosa.load(speaker_audio, sr=16000)
|
252 |
-
speaker_audio = torch.tensor(speaker_audio).unsqueeze(0).to(self.device)
|
253 |
-
spk_embed = spk_encoder.embed_utterance_batch(speaker_audio)
|
254 |
-
self.spk_embed_cache = spk_embed
|
255 |
-
elif use_spk_cache:
|
256 |
-
assert self.spk_embed_cache is not None
|
257 |
-
spk_embed = self.spk_embed_cache
|
258 |
-
else:
|
259 |
-
raise NotImplementedError
|
260 |
-
|
261 |
-
content_clip = self._load_content(content_audio)
|
262 |
-
|
263 |
-
B, L, D = content_clip.shape
|
264 |
-
gen_audio_chunks = []
|
265 |
-
num_chunks = (L + self.chunk_size - 1) // self.chunk_size
|
266 |
-
for i in range(num_chunks):
|
267 |
-
start_idx = i * self.chunk_size
|
268 |
-
end_idx = min((i + 1) * self.chunk_size, L)
|
269 |
-
content_clip_chunk = content_clip[:, start_idx:end_idx, :]
|
270 |
-
|
271 |
-
gen_audio_chunk = self.dreamvc.inference(
|
272 |
-
spk_embed, content_clip_chunk, None,
|
273 |
-
guidance_scale=vc_guidance_scale,
|
274 |
-
guidance_rescale=vc_guidance_rescale,
|
275 |
-
ddim_steps=vc_ddim_steps,
|
276 |
-
eta=vc_eta,
|
277 |
-
random_seed=vc_random_seed)
|
278 |
-
|
279 |
-
gen_audio_chunks.append(gen_audio_chunk)
|
280 |
-
|
281 |
-
gen_audio = torch.cat(gen_audio_chunks, dim=-1)
|
282 |
-
|
283 |
-
gen_audio = self.hifigan(gen_audio.squeeze(1))
|
284 |
-
gen_audio = gen_audio.cpu().numpy().squeeze(0).squeeze(0)
|
285 |
-
|
286 |
-
return gen_audio, self.sr
|
287 |
-
|
288 |
-
|
289 |
-
if __name__ == '__main__':
|
290 |
-
dreamvoice = DreamVoice(config='dreamvc.yaml', mode='plugin', device='cuda')
|
291 |
-
content_audio = 'test.wav'
|
292 |
-
speaker_audio = 'speaker.wav'
|
293 |
-
prompt = 'young female voice, sounds young and cute'
|
294 |
-
gen_audio, sr = dreamvoice.genvc('test.wav', prompt)
|
295 |
-
dreamvoice.save_audio('debug.wav', gen_audio, sr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|