Higobeatz commited on
Commit
7bb8184
·
verified ·
1 Parent(s): dd070db

Delete dreamvoice/src/utils/.ipynb_checkpoints

Browse files
dreamvoice/src/utils/.ipynb_checkpoints/__init__-checkpoint.py DELETED
@@ -1 +0,0 @@
1
- from .utils import *
 
 
dreamvoice/src/utils/.ipynb_checkpoints/utils-checkpoint.py DELETED
@@ -1,76 +0,0 @@
1
- import numpy as np
2
- import matplotlib.pyplot as plt
3
- from scipy.io import wavfile
4
- import torch
5
-
6
-
7
- def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
8
- """
9
- Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
10
- Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
11
- """
12
- std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
13
- std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
14
- # rescale the results from guidance (fixes overexposure)
15
- noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
16
- # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
17
- noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
18
- return noise_cfg
19
-
20
-
21
- def scale_shift(x, scale, shift):
22
- return (x+shift) * scale
23
-
24
-
25
- def scale_shift_re(x, scale, shift):
26
- return (x/scale) - shift
27
-
28
-
29
- def align_seq(source, target_length, mapping_method='hard'):
30
- source_len = source.shape[1]
31
- if mapping_method == 'hard':
32
- mapping_idx = np.round(np.arange(target_length) * source_len / target_length)
33
- output = source[:, mapping_idx]
34
- else:
35
- # TBD
36
- raise NotImplementedError
37
-
38
- return output
39
-
40
-
41
- def save_plot(tensor, savepath):
42
- tensor = tensor.squeeze().cpu()
43
- plt.style.use('default')
44
- fig, ax = plt.subplots(figsize=(12, 3))
45
- im = ax.imshow(tensor, aspect="auto", origin="lower", interpolation='none')
46
- plt.colorbar(im, ax=ax)
47
- plt.tight_layout()
48
- fig.canvas.draw()
49
- plt.savefig(savepath)
50
- plt.close()
51
-
52
-
53
- def save_audio(file_path, sampling_rate, audio):
54
- audio = np.clip(audio.cpu().squeeze().numpy(), -0.999, 0.999)
55
- wavfile.write(file_path, sampling_rate, (audio * 32767).astype("int16"))
56
-
57
-
58
- def minmax_norm_diff(tensor: torch.Tensor, vmax: float = 2.5, vmin: float = -12) -> torch.Tensor:
59
- tensor = torch.clip(tensor, vmin, vmax)
60
- tensor = 2 * (tensor - vmin) / (vmax - vmin) - 1
61
- return tensor
62
-
63
-
64
- def reverse_minmax_norm_diff(tensor: torch.Tensor, vmax: float = 2.5, vmin: float = -12) -> torch.Tensor:
65
- tensor = torch.clip(tensor, -1.0, 1.0)
66
- tensor = (tensor + 1) / 2
67
- tensor = tensor * (vmax - vmin) + vmin
68
- return tensor
69
-
70
-
71
- if __name__ == "__main__":
72
-
73
- a = torch.rand(2, 10)
74
- target_len = 15
75
-
76
- b = align_seq(a, target_len)