Higobeatz commited on
Commit
3c561d7
·
verified ·
1 Parent(s): f89ea5b

Delete dreamvoice/src/model/.ipynb_checkpoints

Browse files
dreamvoice/src/model/.ipynb_checkpoints/model-checkpoint.py DELETED
@@ -1,98 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from diffusers import UNet2DModel, UNet2DConditionModel
4
- import yaml
5
- from einops import repeat, rearrange
6
-
7
- from typing import Any
8
- from torch import Tensor
9
-
10
-
11
- def rand_bool(shape: Any, proba: float, device: Any = None) -> Tensor:
12
- if proba == 1:
13
- return torch.ones(shape, device=device, dtype=torch.bool)
14
- elif proba == 0:
15
- return torch.zeros(shape, device=device, dtype=torch.bool)
16
- else:
17
- return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
18
-
19
-
20
- class DiffVC(nn.Module):
21
- def __init__(self, config):
22
- super().__init__()
23
- self.config = config
24
- self.unet = UNet2DModel(**self.config['unet'])
25
- self.unet.set_use_memory_efficient_attention_xformers(True)
26
- self.speaker_embedding = nn.Sequential(
27
- nn.Linear(self.config['cls_embedding']['speaker_dim'], self.config['cls_embedding']['feature_dim']),
28
- nn.SiLU(),
29
- nn.Linear(self.config['cls_embedding']['feature_dim'], self.config['cls_embedding']['feature_dim']))
30
- self.uncond = nn.Parameter(torch.randn(self.config['cls_embedding']['speaker_dim']) /
31
- self.config['cls_embedding']['speaker_dim'] ** 0.5)
32
- self.content_embedding = nn.Sequential(
33
- nn.Linear(self.config['cls_embedding']['content_dim'], self.config['cls_embedding']['content_hidden']),
34
- nn.SiLU(),
35
- nn.Linear(self.config['cls_embedding']['content_hidden'], self.config['cls_embedding']['content_hidden']))
36
-
37
- if self.config['cls_embedding']['use_pitch']:
38
- self.pitch_control = True
39
- self.pitch_embedding = nn.Sequential(
40
- nn.Linear(self.config['cls_embedding']['pitch_dim'], self.config['cls_embedding']['pitch_hidden']),
41
- nn.SiLU(),
42
- nn.Linear(self.config['cls_embedding']['pitch_hidden'],
43
- self.config['cls_embedding']['pitch_hidden']))
44
- self.pitch_uncond = nn.Parameter(torch.randn(self.config['cls_embedding']['pitch_hidden']) /
45
- self.config['cls_embedding']['pitch_hidden'] ** 0.5)
46
- else:
47
- print('no pitch module')
48
- self.pitch_control = False
49
-
50
- def forward(self, target, t, content, speaker, pitch,
51
- train_cfg=False, speaker_cfg=0.0, pitch_cfg=0.0):
52
- B, C, M, L = target.shape
53
- content = self.content_embedding(content)
54
- content = repeat(content, "b t c-> b c m t", m=M)
55
- target = target.to(content.dtype)
56
- x = torch.cat([target, content], dim=1)
57
-
58
- if self.pitch_control:
59
- if pitch is not None:
60
- pitch = self.pitch_embedding(pitch)
61
- else:
62
- pitch = repeat(self.pitch_uncond, "c-> b t c", b=B, t=L).to(target.dtype)
63
-
64
- if train_cfg:
65
- uncond = repeat(self.uncond, "c-> b c", b=B).to(target.dtype)
66
- batch_mask = rand_bool(shape=(B, 1), proba=speaker_cfg, device=target.device)
67
- speaker = torch.where(batch_mask, uncond, speaker)
68
-
69
- if self.pitch_control:
70
- batch_mask = rand_bool(shape=(B, 1, 1), proba=pitch_cfg, device=target.device)
71
- pitch_uncond = repeat(self.pitch_uncond, "c-> b t c", b=B, t=L).to(target.dtype)
72
- pitch = torch.where(batch_mask, pitch_uncond, pitch)
73
-
74
- speaker = self.speaker_embedding(speaker)
75
-
76
- if self.pitch_control:
77
- pitch = repeat(pitch, "b t c-> b c m t", m=M)
78
- x = torch.cat([x, pitch], dim=1)
79
-
80
- output = self.unet(sample=x, timestep=t, class_labels=speaker)['sample']
81
-
82
- return output
83
-
84
-
85
- if __name__ == "__main__":
86
- with open('diffvc_base_pitch.yaml', 'r') as fp:
87
- config = yaml.safe_load(fp)
88
- device = 'cuda'
89
-
90
- model = DiffVC(config['diffwrap']).to(device)
91
-
92
- x = torch.rand((2, 1, 100, 256)).to(device)
93
- y = torch.rand((2, 256, 768)).to(device)
94
- p = torch.rand(2, 256, 1).to(device)
95
- t = torch.randint(0, 1000, (2,)).long().to(device)
96
- spk = torch.rand(2, 256).to(device)
97
-
98
- output = model(x, t, y, spk, pitch=p, train_cfg=True, cfg_prob=0.25)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dreamvoice/src/model/.ipynb_checkpoints/model_cross-checkpoint.py DELETED
@@ -1,116 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from diffusers import UNet2DModel, UNet2DConditionModel
4
- import yaml
5
- from einops import repeat, rearrange
6
-
7
- from typing import Any
8
- from torch import Tensor
9
-
10
-
11
- def rand_bool(shape: Any, proba: float, device: Any = None) -> Tensor:
12
- if proba == 1:
13
- return torch.ones(shape, device=device, dtype=torch.bool)
14
- elif proba == 0:
15
- return torch.zeros(shape, device=device, dtype=torch.bool)
16
- else:
17
- return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
18
-
19
-
20
- class FixedEmbedding(nn.Module):
21
- def __init__(self, features=128):
22
- super().__init__()
23
- self.embedding = nn.Embedding(1, features)
24
-
25
- def forward(self, y):
26
- B, L, C, device = y.shape[0], y.shape[-2], y.shape[-1], y.device
27
- embed = self.embedding(torch.zeros(B, device=device).long())
28
- fixed_embedding = repeat(embed, "b c -> b l c", l=L)
29
- return fixed_embedding
30
-
31
-
32
- class DiffVC_Cross(nn.Module):
33
- def __init__(self, config):
34
- super().__init__()
35
- self.config = config
36
- self.unet = UNet2DConditionModel(**self.config['unet'])
37
- self.unet.set_use_memory_efficient_attention_xformers(True)
38
- self.cfg_embedding = FixedEmbedding(self.config['unet']['cross_attention_dim'])
39
-
40
- self.context_embedding = nn.Sequential(
41
- nn.Linear(self.config['unet']['cross_attention_dim'], self.config['unet']['cross_attention_dim']),
42
- nn.SiLU(),
43
- nn.Linear(self.config['unet']['cross_attention_dim'], self.config['unet']['cross_attention_dim']))
44
-
45
- self.content_embedding = nn.Sequential(
46
- nn.Linear(self.config['cls_embedding']['content_dim'], self.config['cls_embedding']['content_hidden']),
47
- nn.SiLU(),
48
- nn.Linear(self.config['cls_embedding']['content_hidden'], self.config['cls_embedding']['content_hidden']))
49
-
50
- if self.config['cls_embedding']['use_pitch']:
51
- self.pitch_control = True
52
- self.pitch_embedding = nn.Sequential(
53
- nn.Linear(self.config['cls_embedding']['pitch_dim'], self.config['cls_embedding']['pitch_hidden']),
54
- nn.SiLU(),
55
- nn.Linear(self.config['cls_embedding']['pitch_hidden'],
56
- self.config['cls_embedding']['pitch_hidden']))
57
-
58
- self.pitch_uncond = nn.Parameter(torch.randn(self.config['cls_embedding']['pitch_hidden']) /
59
- self.config['cls_embedding']['pitch_hidden'] ** 0.5)
60
- else:
61
- print('no pitch module')
62
- self.pitch_control = False
63
-
64
- def forward(self, target, t, content, prompt, prompt_mask=None, pitch=None,
65
- train_cfg=False, speaker_cfg=0.0, pitch_cfg=0.0):
66
- B, C, M, L = target.shape
67
- content = self.content_embedding(content)
68
- content = repeat(content, "b t c-> b c m t", m=M)
69
- target = target.to(content.dtype)
70
- x = torch.cat([target, content], dim=1)
71
-
72
- if self.pitch_control:
73
- if pitch is not None:
74
- pitch = self.pitch_embedding(pitch)
75
- else:
76
- pitch = repeat(self.pitch_uncond, "c-> b t c", b=B, t=L).to(target.dtype)
77
-
78
- if train_cfg:
79
- # Randomly mask embedding
80
- batch_mask = rand_bool(shape=(B, 1, 1), proba=speaker_cfg, device=target.device)
81
- fixed_embedding = self.cfg_embedding(prompt).to(target.dtype)
82
- prompt = torch.where(batch_mask, fixed_embedding, prompt)
83
-
84
- if self.pitch_control:
85
- batch_mask = rand_bool(shape=(B, 1, 1), proba=pitch_cfg, device=target.device)
86
- pitch_uncond = repeat(self.pitch_uncond, "c-> b t c", b=B, t=L).to(target.dtype)
87
- pitch = torch.where(batch_mask, pitch_uncond, pitch)
88
-
89
- prompt = self.context_embedding(prompt)
90
-
91
- if self.pitch_control:
92
- pitch = repeat(pitch, "b t c-> b c m t", m=M)
93
- x = torch.cat([x, pitch], dim=1)
94
-
95
- output = self.unet(sample=x, timestep=t,
96
- encoder_hidden_states=prompt,
97
- encoder_attention_mask=prompt_mask)['sample']
98
-
99
- return output
100
-
101
-
102
- if __name__ == "__main__":
103
- with open('diffvc_cross_pitch.yaml', 'r') as fp:
104
- config = yaml.safe_load(fp)
105
- device = 'cuda'
106
-
107
- model = DiffVC_Cross(config['diffwrap']).to(device)
108
-
109
- x = torch.rand((2, 1, 100, 256)).to(device)
110
- y = torch.rand((2, 256, 768)).to(device)
111
- t = torch.randint(0, 1000, (2,)).long().to(device)
112
- prompt = torch.rand(2, 64, 768).to(device)
113
- prompt_mask = torch.ones(2, 64).to(device)
114
- p = torch.rand(2, 256, 1).to(device)
115
-
116
- output = model(x, t, y, prompt, prompt_mask, p, train_cfg=True, speaker_cfg=0.25, pitch_cfg=0.5)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dreamvoice/src/model/.ipynb_checkpoints/p2e_cross-checkpoint.py DELETED
@@ -1,80 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
- from diffusers import UNet2DModel, UNet2DConditionModel
4
- import yaml
5
- from einops import repeat, rearrange
6
-
7
- from typing import Any
8
- from torch import Tensor
9
-
10
-
11
- def rand_bool(shape: Any, proba: float, device: Any = None) -> Tensor:
12
- if proba == 1:
13
- return torch.ones(shape, device=device, dtype=torch.bool)
14
- elif proba == 0:
15
- return torch.zeros(shape, device=device, dtype=torch.bool)
16
- else:
17
- return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
18
-
19
-
20
- class FixedEmbedding(nn.Module):
21
- def __init__(self, features=128):
22
- super().__init__()
23
- self.embedding = nn.Embedding(1, features)
24
-
25
- def forward(self, y):
26
- B, L, C, device = y.shape[0], y.shape[-2], y.shape[-1], y.device
27
- embed = self.embedding(torch.zeros(B, device=device).long())
28
- fixed_embedding = repeat(embed, "b c -> b l c", l=L)
29
- return fixed_embedding
30
-
31
-
32
- class P2E_Cross(nn.Module):
33
- def __init__(self, config):
34
- super().__init__()
35
- self.config = config
36
- self.unet = UNet2DConditionModel(**self.config['unet'])
37
- self.unet.set_use_memory_efficient_attention_xformers(True)
38
- self.cfg_embedding = FixedEmbedding(self.config['unet']['cross_attention_dim'])
39
-
40
- self.context_embedding = nn.Sequential(
41
- nn.Linear(self.config['unet']['cross_attention_dim'], self.config['unet']['cross_attention_dim']),
42
- nn.SiLU(),
43
- nn.Linear(self.config['unet']['cross_attention_dim'], self.config['unet']['cross_attention_dim']))
44
-
45
- def forward(self, target, t, prompt, prompt_mask=None,
46
- train_cfg=False, cfg_prob=0.0):
47
- B, C = target.shape
48
- target = target.unsqueeze(-1).unsqueeze(-1)
49
-
50
- if train_cfg:
51
- if cfg_prob > 0.0:
52
- # Randomly mask embedding
53
- batch_mask = rand_bool(shape=(B, 1, 1), proba=cfg_prob, device=target.device)
54
- fixed_embedding = self.cfg_embedding(prompt).to(target.dtype)
55
- prompt = torch.where(batch_mask, fixed_embedding, prompt)
56
-
57
- prompt = self.context_embedding(prompt)
58
- # fix the bug that prompt will copy dtype from target in diffusers
59
- target = target.to(prompt.dtype)
60
-
61
- output = self.unet(sample=target, timestep=t,
62
- encoder_hidden_states=prompt,
63
- encoder_attention_mask=prompt_mask)['sample']
64
-
65
- return output.squeeze(-1).squeeze(-1)
66
-
67
-
68
- if __name__ == "__main__":
69
- with open('p2e_cross.yaml', 'r') as fp:
70
- config = yaml.safe_load(fp)
71
- device = 'cuda'
72
-
73
- model = P2E_Cross(config['diffwrap']).to(device)
74
-
75
- x = torch.rand((2, 256)).to(device)
76
- t = torch.randint(0, 1000, (2,)).long().to(device)
77
- prompt = torch.rand(2, 64, 768).to(device)
78
- prompt_mask = torch.ones(2, 64).to(device)
79
-
80
- output = model(x, t, prompt, prompt_mask, train_cfg=True, cfg_prob=0.25)