Delete dreamvoice/src/model/.ipynb_checkpoints
Browse files
dreamvoice/src/model/.ipynb_checkpoints/model-checkpoint.py
DELETED
@@ -1,98 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from diffusers import UNet2DModel, UNet2DConditionModel
|
4 |
-
import yaml
|
5 |
-
from einops import repeat, rearrange
|
6 |
-
|
7 |
-
from typing import Any
|
8 |
-
from torch import Tensor
|
9 |
-
|
10 |
-
|
11 |
-
def rand_bool(shape: Any, proba: float, device: Any = None) -> Tensor:
|
12 |
-
if proba == 1:
|
13 |
-
return torch.ones(shape, device=device, dtype=torch.bool)
|
14 |
-
elif proba == 0:
|
15 |
-
return torch.zeros(shape, device=device, dtype=torch.bool)
|
16 |
-
else:
|
17 |
-
return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
|
18 |
-
|
19 |
-
|
20 |
-
class DiffVC(nn.Module):
|
21 |
-
def __init__(self, config):
|
22 |
-
super().__init__()
|
23 |
-
self.config = config
|
24 |
-
self.unet = UNet2DModel(**self.config['unet'])
|
25 |
-
self.unet.set_use_memory_efficient_attention_xformers(True)
|
26 |
-
self.speaker_embedding = nn.Sequential(
|
27 |
-
nn.Linear(self.config['cls_embedding']['speaker_dim'], self.config['cls_embedding']['feature_dim']),
|
28 |
-
nn.SiLU(),
|
29 |
-
nn.Linear(self.config['cls_embedding']['feature_dim'], self.config['cls_embedding']['feature_dim']))
|
30 |
-
self.uncond = nn.Parameter(torch.randn(self.config['cls_embedding']['speaker_dim']) /
|
31 |
-
self.config['cls_embedding']['speaker_dim'] ** 0.5)
|
32 |
-
self.content_embedding = nn.Sequential(
|
33 |
-
nn.Linear(self.config['cls_embedding']['content_dim'], self.config['cls_embedding']['content_hidden']),
|
34 |
-
nn.SiLU(),
|
35 |
-
nn.Linear(self.config['cls_embedding']['content_hidden'], self.config['cls_embedding']['content_hidden']))
|
36 |
-
|
37 |
-
if self.config['cls_embedding']['use_pitch']:
|
38 |
-
self.pitch_control = True
|
39 |
-
self.pitch_embedding = nn.Sequential(
|
40 |
-
nn.Linear(self.config['cls_embedding']['pitch_dim'], self.config['cls_embedding']['pitch_hidden']),
|
41 |
-
nn.SiLU(),
|
42 |
-
nn.Linear(self.config['cls_embedding']['pitch_hidden'],
|
43 |
-
self.config['cls_embedding']['pitch_hidden']))
|
44 |
-
self.pitch_uncond = nn.Parameter(torch.randn(self.config['cls_embedding']['pitch_hidden']) /
|
45 |
-
self.config['cls_embedding']['pitch_hidden'] ** 0.5)
|
46 |
-
else:
|
47 |
-
print('no pitch module')
|
48 |
-
self.pitch_control = False
|
49 |
-
|
50 |
-
def forward(self, target, t, content, speaker, pitch,
|
51 |
-
train_cfg=False, speaker_cfg=0.0, pitch_cfg=0.0):
|
52 |
-
B, C, M, L = target.shape
|
53 |
-
content = self.content_embedding(content)
|
54 |
-
content = repeat(content, "b t c-> b c m t", m=M)
|
55 |
-
target = target.to(content.dtype)
|
56 |
-
x = torch.cat([target, content], dim=1)
|
57 |
-
|
58 |
-
if self.pitch_control:
|
59 |
-
if pitch is not None:
|
60 |
-
pitch = self.pitch_embedding(pitch)
|
61 |
-
else:
|
62 |
-
pitch = repeat(self.pitch_uncond, "c-> b t c", b=B, t=L).to(target.dtype)
|
63 |
-
|
64 |
-
if train_cfg:
|
65 |
-
uncond = repeat(self.uncond, "c-> b c", b=B).to(target.dtype)
|
66 |
-
batch_mask = rand_bool(shape=(B, 1), proba=speaker_cfg, device=target.device)
|
67 |
-
speaker = torch.where(batch_mask, uncond, speaker)
|
68 |
-
|
69 |
-
if self.pitch_control:
|
70 |
-
batch_mask = rand_bool(shape=(B, 1, 1), proba=pitch_cfg, device=target.device)
|
71 |
-
pitch_uncond = repeat(self.pitch_uncond, "c-> b t c", b=B, t=L).to(target.dtype)
|
72 |
-
pitch = torch.where(batch_mask, pitch_uncond, pitch)
|
73 |
-
|
74 |
-
speaker = self.speaker_embedding(speaker)
|
75 |
-
|
76 |
-
if self.pitch_control:
|
77 |
-
pitch = repeat(pitch, "b t c-> b c m t", m=M)
|
78 |
-
x = torch.cat([x, pitch], dim=1)
|
79 |
-
|
80 |
-
output = self.unet(sample=x, timestep=t, class_labels=speaker)['sample']
|
81 |
-
|
82 |
-
return output
|
83 |
-
|
84 |
-
|
85 |
-
if __name__ == "__main__":
|
86 |
-
with open('diffvc_base_pitch.yaml', 'r') as fp:
|
87 |
-
config = yaml.safe_load(fp)
|
88 |
-
device = 'cuda'
|
89 |
-
|
90 |
-
model = DiffVC(config['diffwrap']).to(device)
|
91 |
-
|
92 |
-
x = torch.rand((2, 1, 100, 256)).to(device)
|
93 |
-
y = torch.rand((2, 256, 768)).to(device)
|
94 |
-
p = torch.rand(2, 256, 1).to(device)
|
95 |
-
t = torch.randint(0, 1000, (2,)).long().to(device)
|
96 |
-
spk = torch.rand(2, 256).to(device)
|
97 |
-
|
98 |
-
output = model(x, t, y, spk, pitch=p, train_cfg=True, cfg_prob=0.25)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/src/model/.ipynb_checkpoints/model_cross-checkpoint.py
DELETED
@@ -1,116 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from diffusers import UNet2DModel, UNet2DConditionModel
|
4 |
-
import yaml
|
5 |
-
from einops import repeat, rearrange
|
6 |
-
|
7 |
-
from typing import Any
|
8 |
-
from torch import Tensor
|
9 |
-
|
10 |
-
|
11 |
-
def rand_bool(shape: Any, proba: float, device: Any = None) -> Tensor:
|
12 |
-
if proba == 1:
|
13 |
-
return torch.ones(shape, device=device, dtype=torch.bool)
|
14 |
-
elif proba == 0:
|
15 |
-
return torch.zeros(shape, device=device, dtype=torch.bool)
|
16 |
-
else:
|
17 |
-
return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
|
18 |
-
|
19 |
-
|
20 |
-
class FixedEmbedding(nn.Module):
|
21 |
-
def __init__(self, features=128):
|
22 |
-
super().__init__()
|
23 |
-
self.embedding = nn.Embedding(1, features)
|
24 |
-
|
25 |
-
def forward(self, y):
|
26 |
-
B, L, C, device = y.shape[0], y.shape[-2], y.shape[-1], y.device
|
27 |
-
embed = self.embedding(torch.zeros(B, device=device).long())
|
28 |
-
fixed_embedding = repeat(embed, "b c -> b l c", l=L)
|
29 |
-
return fixed_embedding
|
30 |
-
|
31 |
-
|
32 |
-
class DiffVC_Cross(nn.Module):
|
33 |
-
def __init__(self, config):
|
34 |
-
super().__init__()
|
35 |
-
self.config = config
|
36 |
-
self.unet = UNet2DConditionModel(**self.config['unet'])
|
37 |
-
self.unet.set_use_memory_efficient_attention_xformers(True)
|
38 |
-
self.cfg_embedding = FixedEmbedding(self.config['unet']['cross_attention_dim'])
|
39 |
-
|
40 |
-
self.context_embedding = nn.Sequential(
|
41 |
-
nn.Linear(self.config['unet']['cross_attention_dim'], self.config['unet']['cross_attention_dim']),
|
42 |
-
nn.SiLU(),
|
43 |
-
nn.Linear(self.config['unet']['cross_attention_dim'], self.config['unet']['cross_attention_dim']))
|
44 |
-
|
45 |
-
self.content_embedding = nn.Sequential(
|
46 |
-
nn.Linear(self.config['cls_embedding']['content_dim'], self.config['cls_embedding']['content_hidden']),
|
47 |
-
nn.SiLU(),
|
48 |
-
nn.Linear(self.config['cls_embedding']['content_hidden'], self.config['cls_embedding']['content_hidden']))
|
49 |
-
|
50 |
-
if self.config['cls_embedding']['use_pitch']:
|
51 |
-
self.pitch_control = True
|
52 |
-
self.pitch_embedding = nn.Sequential(
|
53 |
-
nn.Linear(self.config['cls_embedding']['pitch_dim'], self.config['cls_embedding']['pitch_hidden']),
|
54 |
-
nn.SiLU(),
|
55 |
-
nn.Linear(self.config['cls_embedding']['pitch_hidden'],
|
56 |
-
self.config['cls_embedding']['pitch_hidden']))
|
57 |
-
|
58 |
-
self.pitch_uncond = nn.Parameter(torch.randn(self.config['cls_embedding']['pitch_hidden']) /
|
59 |
-
self.config['cls_embedding']['pitch_hidden'] ** 0.5)
|
60 |
-
else:
|
61 |
-
print('no pitch module')
|
62 |
-
self.pitch_control = False
|
63 |
-
|
64 |
-
def forward(self, target, t, content, prompt, prompt_mask=None, pitch=None,
|
65 |
-
train_cfg=False, speaker_cfg=0.0, pitch_cfg=0.0):
|
66 |
-
B, C, M, L = target.shape
|
67 |
-
content = self.content_embedding(content)
|
68 |
-
content = repeat(content, "b t c-> b c m t", m=M)
|
69 |
-
target = target.to(content.dtype)
|
70 |
-
x = torch.cat([target, content], dim=1)
|
71 |
-
|
72 |
-
if self.pitch_control:
|
73 |
-
if pitch is not None:
|
74 |
-
pitch = self.pitch_embedding(pitch)
|
75 |
-
else:
|
76 |
-
pitch = repeat(self.pitch_uncond, "c-> b t c", b=B, t=L).to(target.dtype)
|
77 |
-
|
78 |
-
if train_cfg:
|
79 |
-
# Randomly mask embedding
|
80 |
-
batch_mask = rand_bool(shape=(B, 1, 1), proba=speaker_cfg, device=target.device)
|
81 |
-
fixed_embedding = self.cfg_embedding(prompt).to(target.dtype)
|
82 |
-
prompt = torch.where(batch_mask, fixed_embedding, prompt)
|
83 |
-
|
84 |
-
if self.pitch_control:
|
85 |
-
batch_mask = rand_bool(shape=(B, 1, 1), proba=pitch_cfg, device=target.device)
|
86 |
-
pitch_uncond = repeat(self.pitch_uncond, "c-> b t c", b=B, t=L).to(target.dtype)
|
87 |
-
pitch = torch.where(batch_mask, pitch_uncond, pitch)
|
88 |
-
|
89 |
-
prompt = self.context_embedding(prompt)
|
90 |
-
|
91 |
-
if self.pitch_control:
|
92 |
-
pitch = repeat(pitch, "b t c-> b c m t", m=M)
|
93 |
-
x = torch.cat([x, pitch], dim=1)
|
94 |
-
|
95 |
-
output = self.unet(sample=x, timestep=t,
|
96 |
-
encoder_hidden_states=prompt,
|
97 |
-
encoder_attention_mask=prompt_mask)['sample']
|
98 |
-
|
99 |
-
return output
|
100 |
-
|
101 |
-
|
102 |
-
if __name__ == "__main__":
|
103 |
-
with open('diffvc_cross_pitch.yaml', 'r') as fp:
|
104 |
-
config = yaml.safe_load(fp)
|
105 |
-
device = 'cuda'
|
106 |
-
|
107 |
-
model = DiffVC_Cross(config['diffwrap']).to(device)
|
108 |
-
|
109 |
-
x = torch.rand((2, 1, 100, 256)).to(device)
|
110 |
-
y = torch.rand((2, 256, 768)).to(device)
|
111 |
-
t = torch.randint(0, 1000, (2,)).long().to(device)
|
112 |
-
prompt = torch.rand(2, 64, 768).to(device)
|
113 |
-
prompt_mask = torch.ones(2, 64).to(device)
|
114 |
-
p = torch.rand(2, 256, 1).to(device)
|
115 |
-
|
116 |
-
output = model(x, t, y, prompt, prompt_mask, p, train_cfg=True, speaker_cfg=0.25, pitch_cfg=0.5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dreamvoice/src/model/.ipynb_checkpoints/p2e_cross-checkpoint.py
DELETED
@@ -1,80 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn as nn
|
3 |
-
from diffusers import UNet2DModel, UNet2DConditionModel
|
4 |
-
import yaml
|
5 |
-
from einops import repeat, rearrange
|
6 |
-
|
7 |
-
from typing import Any
|
8 |
-
from torch import Tensor
|
9 |
-
|
10 |
-
|
11 |
-
def rand_bool(shape: Any, proba: float, device: Any = None) -> Tensor:
|
12 |
-
if proba == 1:
|
13 |
-
return torch.ones(shape, device=device, dtype=torch.bool)
|
14 |
-
elif proba == 0:
|
15 |
-
return torch.zeros(shape, device=device, dtype=torch.bool)
|
16 |
-
else:
|
17 |
-
return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
|
18 |
-
|
19 |
-
|
20 |
-
class FixedEmbedding(nn.Module):
|
21 |
-
def __init__(self, features=128):
|
22 |
-
super().__init__()
|
23 |
-
self.embedding = nn.Embedding(1, features)
|
24 |
-
|
25 |
-
def forward(self, y):
|
26 |
-
B, L, C, device = y.shape[0], y.shape[-2], y.shape[-1], y.device
|
27 |
-
embed = self.embedding(torch.zeros(B, device=device).long())
|
28 |
-
fixed_embedding = repeat(embed, "b c -> b l c", l=L)
|
29 |
-
return fixed_embedding
|
30 |
-
|
31 |
-
|
32 |
-
class P2E_Cross(nn.Module):
|
33 |
-
def __init__(self, config):
|
34 |
-
super().__init__()
|
35 |
-
self.config = config
|
36 |
-
self.unet = UNet2DConditionModel(**self.config['unet'])
|
37 |
-
self.unet.set_use_memory_efficient_attention_xformers(True)
|
38 |
-
self.cfg_embedding = FixedEmbedding(self.config['unet']['cross_attention_dim'])
|
39 |
-
|
40 |
-
self.context_embedding = nn.Sequential(
|
41 |
-
nn.Linear(self.config['unet']['cross_attention_dim'], self.config['unet']['cross_attention_dim']),
|
42 |
-
nn.SiLU(),
|
43 |
-
nn.Linear(self.config['unet']['cross_attention_dim'], self.config['unet']['cross_attention_dim']))
|
44 |
-
|
45 |
-
def forward(self, target, t, prompt, prompt_mask=None,
|
46 |
-
train_cfg=False, cfg_prob=0.0):
|
47 |
-
B, C = target.shape
|
48 |
-
target = target.unsqueeze(-1).unsqueeze(-1)
|
49 |
-
|
50 |
-
if train_cfg:
|
51 |
-
if cfg_prob > 0.0:
|
52 |
-
# Randomly mask embedding
|
53 |
-
batch_mask = rand_bool(shape=(B, 1, 1), proba=cfg_prob, device=target.device)
|
54 |
-
fixed_embedding = self.cfg_embedding(prompt).to(target.dtype)
|
55 |
-
prompt = torch.where(batch_mask, fixed_embedding, prompt)
|
56 |
-
|
57 |
-
prompt = self.context_embedding(prompt)
|
58 |
-
# fix the bug that prompt will copy dtype from target in diffusers
|
59 |
-
target = target.to(prompt.dtype)
|
60 |
-
|
61 |
-
output = self.unet(sample=target, timestep=t,
|
62 |
-
encoder_hidden_states=prompt,
|
63 |
-
encoder_attention_mask=prompt_mask)['sample']
|
64 |
-
|
65 |
-
return output.squeeze(-1).squeeze(-1)
|
66 |
-
|
67 |
-
|
68 |
-
if __name__ == "__main__":
|
69 |
-
with open('p2e_cross.yaml', 'r') as fp:
|
70 |
-
config = yaml.safe_load(fp)
|
71 |
-
device = 'cuda'
|
72 |
-
|
73 |
-
model = P2E_Cross(config['diffwrap']).to(device)
|
74 |
-
|
75 |
-
x = torch.rand((2, 256)).to(device)
|
76 |
-
t = torch.randint(0, 1000, (2,)).long().to(device)
|
77 |
-
prompt = torch.rand(2, 64, 768).to(device)
|
78 |
-
prompt_mask = torch.ones(2, 64).to(device)
|
79 |
-
|
80 |
-
output = model(x, t, prompt, prompt_mask, train_cfg=True, cfg_prob=0.25)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|