File size: 5,992 Bytes
f13d144 14e1f3b 4056d41 14e1f3b 373d5f7 14e1f3b fa6de38 14e1f3b 853cf78 14e1f3b bda8552 c16968a 14e1f3b 10f6091 8b69a0d 17d236f 8b69a0d 6ab9b8b 8b69a0d 10e7ec2 853cf78 ca0bd50 853cf78 17420f4 853cf78 e52c10a 14e1f3b 853cf78 c16968a 5466032 9545c20 c16968a 094a0e1 c16968a 9545c20 c16968a e52c10a 14e1f3b e52c10a 14e1f3b a82b1e3 14e1f3b fa6de38 14e1f3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
---
language:
- en
tags:
- myshell
- speech-to-speech
---
<!-- might put a [width=2000 * height=xxx] img here, this size best fits git page
<img src="resources\cover.png"> -->
<img src="resources/dreamvoice.png">
# DreamVoice: Text-guided Voice Conversion
--------------------
## Introduction
DreamVoice is an innovative approach to voice conversion (VC) that leverages text-guided generation to create personalized and versatile voice experiences.
Unlike traditional VC methods, which require a target recording during inference, DreamVoice introduces a more intuitive solution by allowing users to specify desired voice timbres through text prompts.
For more details, please check our interspeech paper: [DreamVoice](https://arxiv.org/abs/2406.16314)
To listen to demos and download dataset, please check dreamvoice's homepage: [Homepage](https://haidog-yaqub.github.io/dreamvoice_demo/)
# How to Use
To load the models, you need to install packages:
```
pip install -r requirements.txt
```
Then you can use the model with the following code:
- DreamVoice Plugin for FreeVC (DreamVG + [FreeVC](https://github.com/OlaWod/FreeVC))
```python
import torch
import librosa
import soundfile as sf
from dreamvoice import DreamVoice_Plugin
from dreamvoice.freevc_wrapper import get_freevc_models, convert
device = 'cuda'
freevc, cmodel, hps = get_freevc_models('ckpts_freevc/', 'dreamvoice/', device)
# init dreamvoice
dreamvoice = DreamVoice_Plugin(config='plugin_freevc.yaml', device=device)
# generate speaker
prompt = "old female's voice, deep and dark"
target_se = dreamvoice.gen_spk(prompt)
# content source
source_path = 'examples/test1.wav'
audio_clip = librosa.load(source_path, sr=16000)[0]
audio_clip = torch.tensor(audio_clip).unsqueeze(0).to(device)
content = cmodel(audio_clip).last_hidden_state.transpose(1, 2).to(device)
# voice conversion
output, out_sr = convert(freevc, content, target_se)
sf.write('output.wav', output, out_sr)
```
- DreamVoice Plugin for OpenVoice (DreamVG + [OpneVoice](https://github.com/myshell-ai/OpenVoice))
```python
import torch
from dreamvoice import DreamVoice_Plugin
from dreamvoice.openvoice_utils import se_extractor
from openvoice.api import ToneColorConverter
# init dreamvoice
dreamvoice = DreamVoice_Plugin(device='cuda')
# init openvoice
ckpt_converter = 'checkpoints_v2/converter'
openvoice = ToneColorConverter(f'{ckpt_converter}/config.json', device='cuda')
openvoice.load_ckpt(f'{ckpt_converter}/checkpoint.pth')
# generate speaker
prompt = 'young female voice, sounds young and cute'
target_se = dreamvoice.gen_spk(prompt)
target_se = target_se.unsqueeze(-1)
# content source
source_path = 'examples/test2.wav'
source_se = se_extractor(source_path, openvoice).to(device)
# voice conversion
encode_message = "@MyShell"
openvoice.convert(
audio_src_path=source_path,
src_se=source_se,
tgt_se=target_se,
output_path='output.wav',
message=encode_message)
```
- DreamVoice Plugin for DiffVC (Diffusion-based VC Model)
```python
from dreamvoice import DreamVoice
# Initialize DreamVoice in plugin mode with CUDA device
dreamvoice = DreamVoice(mode='plugin', device='cuda')
# Description of the target voice
prompt = 'young female voice, sounds young and cute'
# Provide the path to the content audio and generate the converted audio
gen_audio, sr = dreamvoice.genvc('examples/test1.wav', prompt)
# Save the converted audio
dreamvoice.save_audio('gen1.wav', gen_audio, sr)
# Save the speaker embedding if you like the generated voice
dreamvoice.save_spk_embed('voice_stash1.pt')
# Load the saved speaker embedding
dreamvoice.load_spk_embed('voice_stash1.pt')
# Use the saved speaker embedding for another audio sample
gen_audio2, sr = dreamvoice.simplevc('examples/test2.wav', use_spk_cache=True)
dreamvoice.save_audio('gen2.wav', gen_audio2, sr)
```
# Training Guide
1. download VCTK and LibriTTS-R
2. download [DreamVoice DataSet](https://haidog-yaqub.github.io/dreamvoice_demo/)
3. extract speaker embeddings and cache in local path:
```
python dreamvoice/train_utils/prepare/prepare_se.py
```
4. modify trainning config and train your dreamvoice plugin:
```
cd dreamvoice/train_utils/src
accelerate launch train.py
```
# Extra Features
- End-to-end DreamVoice VC Model
```python
from dreamvoice import DreamVoice
# Initialize DreamVoice in end-to-end mode with CUDA device
dreamvoice = DreamVoice(mode='end2end', device='cuda')
# Provide the path to the content audio and generate the converted audio
gen_end2end, sr = dreamvoice.genvc('examples/test1.wav', prompt)
# Save the converted audio
dreamvoice.save_audio('gen_end2end.wav', gen_end2end, sr)
# Note: End-to-end mode does not support saving speaker embeddings
# To use a voice generated in end-to-end mode, switch back to plugin mode
# and extract the speaker embedding from the generated audio
# Switch back to plugin mode
dreamvoice = DreamVoice(mode='plugin', device='cuda')
# Load the speaker audio from the previously generated file
gen_end2end2, sr = dreamvoice.simplevc('examples/test2.wav', speaker_audio='gen_end2end.wav')
# Save the new converted audio
dreamvoice.save_audio('gen_end2end2.wav', gen_end2end2, sr)
```
- DiffVC (Diffusion-based VC Model)
```python
from dreamvoice import DreamVoice
# Plugin mode can be used for traditional one-shot voice conversion
dreamvoice = DreamVoice(mode='plugin', device='cuda')
# Generate audio using traditional one-shot voice conversion
gen_tradition, sr = dreamvoice.simplevc('examples/test1.wav', speaker_audio='examples/speaker.wav')
# Save the converted audio
dreamvoice.save_audio('gen_tradition.wav', gen_tradition, sr)
```
## Reference
If you find the code useful for your research, please consider citing:
```bibtex
@article{hai2024dreamvoice,
title={DreamVoice: Text-Guided Voice Conversion},
author={Hai, Jiarui and Thakkar, Karan and Wang, Helin and Qin, Zengyi and Elhilali, Mounya},
journal={arXiv preprint arXiv:2406.16314},
year={2024}
}
``` |