File size: 1,818 Bytes
7f210ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
model-index:
- name: murat_all_dataset_scratch
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# murat_all_dataset_scratch

This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1076
- Precision: 0.8907
- Recall: 0.8951
- F1: 0.8926

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|
| 1.4346        | 1.0   | 8470  | 0.1299          | 0.8596    | 0.8695 | 0.8643 |
| 0.1653        | 2.0   | 16940 | 0.1124          | 0.8862    | 0.8889 | 0.8867 |
| 0.0956        | 3.0   | 25410 | 0.1076          | 0.8907    | 0.8951 | 0.8926 |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.3.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1