File size: 3,309 Bytes
bbfa6f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import transformers

from typing import Dict, Optional, Sequence, List
from dataclasses import dataclass, field

@dataclass
class ModelArguments:
    model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
    version: Optional[str] = field(default="v0")
    freeze_backbone: bool = field(default=False)
    tune_mm_mlp_adapter: bool = field(default=False)
    vision_tower: Optional[str] = field(default=None)
    mm_vision_select_layer: Optional[int] = field(default=-1)   # default to the last layer
    pretrain_mm_mlp_adapter: Optional[str] = field(default=None)
    mm_projector_type: Optional[str] = field(default='linear')
    mm_use_start_end: bool = field(default=False)
    mm_use_patch_token: bool = field(default=True)
    mm_patch_merge_type: Optional[str] = field(default='flat')
    mm_vision_select_feature: Optional[str] = field(default="patch")
    image_grid_pinpoints: Optional[str] = field(default="[(448, 448)]")

    img_size: int = 224
    drop_path_rate: float = 0.
    vit_precision: Optional[str] = field(default="fp16")
    vit_model_path: Optional[str] = field(default=None)
    qformer_model_path: Optional[str] = field(default=None)
    num_query_token: int = 32

    adapter_module_name: Optional[str] = field(default=None)
    adapter_module_path: Optional[str] = field(default=None)

@dataclass
class DataArguments:
    dataset_config: str = field(default="",
                                metadata={"help": "Training dataset config path"})   
    # data_path: str = field(default=None,
    #                        metadata={"help": "Path to the training data."})
    lazy_preprocess: bool = False
    is_multimodal: bool = False
    # image_folder: Optional[str] = field(default=None)
    image_aspect_ratio: str = 'square'
    # num_segments: int = 10
    num_segments: int = 10
    sample_strategy: str = 'fps0.5'
    external_args: dict = None
    num_token_per_image: Optional[int] = field(default=32) 


@dataclass
class TrainingArguments(transformers.TrainingArguments):
    cache_dir: Optional[str] = field(default=None)
    optim: str = field(default="adamw_torch")
    remove_unused_columns: bool = field(default=False)
    freeze_mm_mlp_adapter: bool = field(default=False)
    freeze_qformer: bool = field(default=True)
    freeze_adapter: bool = field(default=False)
    mpt_attn_impl: Optional[str] = field(default="triton")
    model_max_length: int = field(
        default=512,
        metadata={
            "help":
            "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
        },
    )
    double_quant: bool = field(
        default=True,
        metadata={"help": "Compress the quantization statistics through double quantization."}
    )
    quant_type: str = field(
        default="nf4",
        metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}
    )
    bits: int = field(
        default=16,
        metadata={"help": "How many bits to use."}
    )
    lora_enable: bool = False
    lora_r: int = 64
    lora_alpha: int = 16
    lora_dropout: float = 0.05
    lora_weight_path: str = ""
    lora_bias: str = "none"
    mm_projector_lr: Optional[float] = None
    lora_lr: Optional[float] = None
    group_by_modality_length: bool = field(default=False)