File size: 7,577 Bytes
bbfa6f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import sys
import torch
import os
import random
import base64
import msgpack
from io import BytesIO
import numpy as np
from transformers import AutoTokenizer
from llava.constants import MM_TOKEN_INDEX, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN, DEFAULT_VIDEO_TOKEN, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.utils import disable_torch_init
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria, process_images_v2
from llava.model.builder import load_pretrained_model
from llava.model.multimodal_encoder.processor import Blip2ImageTrainProcessor
from llava.model import LlavaMistralForCausalLM
from transformers import CLIPImageProcessor
from PIL import Image
import logging
def select_frames(input_frames, num_segments = 10):
indices = np.linspace(start=0, stop=len(input_frames)-1, num=num_segments).astype(int)
frames = [input_frames[ind] for ind in indices]
return frames
def load_model(model_path, device_map):
kwargs = {"device_map": device_map}
kwargs['torch_dtype'] = torch.float32
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = LlavaMistralForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
**kwargs
)
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))
vision_tower = model.get_vision_tower()
if not vision_tower.is_loaded:
vision_tower.load_model(device_map=device_map)
return model, tokenizer
class EndpointHandler:
def __init__(self):
model_path = './checkpoint-3000'
disable_torch_init()
model_path = os.path.expanduser(model_path)
#print(model_path)
model_name = get_model_name_from_path(model_path)
model, tokenizer = load_model(model_path, device_map={"":0})
#tokenizer, model, _, context_len = load_pretrained_model(model_path, None, model_name, device_map={"":0})
image_processor = Blip2ImageTrainProcessor(
image_size=model.config.img_size,
is_training=False)
"""
import os
from PIL import Image
input_dir = './v12044gd0000clg1n4fog65p7pag5n6g/video'
image_paths = os.listdir(input_dir)
images = [Image.open(os.path.join(input_dir, item)) for item in image_paths]
num_segments = 10
images = images[:num_segments]
import torch
device = torch.device('cuda:0')
image_processor = Blip2ImageTrainProcessor(
image_size=224,
is_training=False)
images_tensor = [image_processor.preprocess(image).cpu().to(device) for image in images]
"""
self.tokenizer = tokenizer
self.device = torch.device('cpu')
self.model = model.to(self.device)
self.image_processor = image_processor
self.conv_mode = 'v1'
def inference_frames(self, images, question, temperature):
if len(images) > 10:
images = select_frames(images)
conv_mode = self.conv_mode
image_processor = self.image_processor
# if isinstance(image_processor, CLIPImageProcessor):
# images_tensor = [image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0].cpu().to(self.device) for image in images]
# else:
# logging.info(f'length of images:{len(images)}')
#images_tensor = [image_processor.preprocess(image).cpu() for image in images]
#images_tensor = torch.stack(images_tensor, dim=0).half().to(self.device)
images_tensor = process_images_v2(images, image_processor, self.model.config)
images_tensor = images_tensor.to(self.device)
# print(images_tensor.shape)
qs = question
if len(images) == 1:
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
else:
qs = DEFAULT_VIDEO_START_TOKEN + DEFAULT_VIDEO_TOKEN + DEFAULT_VIDEO_END_TOKEN + '\n' + qs
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], qs)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, self.tokenizer, MM_TOKEN_INDEX, return_tensors='pt').unsqueeze(
0).to(self.device)
stop_str = conv.sep if conv.sep2 is None else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, self.tokenizer, input_ids)
with torch.inference_mode():
output_ids = self.model.generate(
input_ids,
images=[images_tensor],
temperature=temperature,
do_sample=True,
top_p=None,
num_beams=1,
no_repeat_ngram_size=3,
max_new_tokens=1024,
use_cache=True,
stopping_criteria=[stopping_criteria],
)
outputs = self.tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()
outputs = outputs.strip()
if outputs.endswith(conv.sep):
outputs = outputs[:-len(stop_str)]
outputs = outputs.strip()
# outputs = outputs[3:-4].strip()
return outputs
def __call__(self, request):
# Step 5: Unpack the data and convert back to PIL images
packed_data= request['images'][0]
unpacked_data = msgpack.unpackb(packed_data, raw=False)
image_list = [Image.open(BytesIO(byte_data)) for byte_data in unpacked_data]
prompt = request.get('prompt', [''.encode()])[0].decode()
temperature = request.get('temperature', ['0.01'.encode()])[0].decode()
temperature = float(temperature)
#print(request)
if prompt=='':
if len(image_list) == 1:
prompt = "Please describe this image in detail."
else:
prompt = "Please describe this video in detail."
# prompt = "Describe the following video in detail."
with torch.no_grad():
outputs = self.inference_frames(image_list, prompt, temperature)
return {'output': [outputs]}
if __name__ == "__main__":
video_dir = '/mnt/bn/yukunfeng-nasdrive/xiangchen/masp_data/20231110_ttp/video/v12044gd0000cl5c6rfog65i2eoqcqig'
frames = [(int(os.path.splitext(item)[0]), os.path.join(video_dir, item)) for item in os.listdir(video_dir)]
frames = [item[1] for item in sorted(frames, key=lambda x: x[0])]
out_frames = [Image.open(frame).convert('RGB') for frame in frames]
# out_frames = select_frames(frames)
request = {}
# Step 3: Convert images to byte format
byte_images = []
for img in out_frames:
byte_io = BytesIO()
img.save(byte_io, format='JPEG')
byte_images.append(byte_io.getvalue())
# Step 4: Pack the byte data with msgpack
packed_data = msgpack.packb(byte_images)
request['images'] = [packed_data]
# request['temperature'] = ['0.2'.encode()]
request['temperature'] = ['0.01'.encode()]
# request['prompt'] = ['describe the image in detail'.encode()]
#new_request = {}
#new_request['0'] = request['2']
handler = EndpointHandler()
print(handler(request))
|