File size: 7,577 Bytes
bbfa6f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import sys
import torch
import os
import random
import base64
import msgpack
from io import BytesIO
import numpy as np

from transformers import AutoTokenizer
from llava.constants import MM_TOKEN_INDEX, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN, DEFAULT_VIDEO_TOKEN, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.conversation import conv_templates, SeparatorStyle
from llava.utils import disable_torch_init
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria, process_images_v2
from llava.model.builder import load_pretrained_model
from llava.model.multimodal_encoder.processor import Blip2ImageTrainProcessor
from llava.model import LlavaMistralForCausalLM


from transformers import CLIPImageProcessor
from PIL import Image
import logging

def select_frames(input_frames, num_segments = 10):

    indices = np.linspace(start=0, stop=len(input_frames)-1, num=num_segments).astype(int)

    frames = [input_frames[ind] for ind in indices]

    return frames

def load_model(model_path, device_map):
    kwargs = {"device_map": device_map}
    kwargs['torch_dtype'] = torch.float32
    tokenizer = AutoTokenizer.from_pretrained(model_path)
    model = LlavaMistralForCausalLM.from_pretrained(
        model_path,
        low_cpu_mem_usage=True,
        **kwargs
    )
    tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_VIDEO_START_TOKEN, DEFAULT_VIDEO_END_TOKEN], special_tokens=True)
    model.resize_token_embeddings(len(tokenizer))

    vision_tower = model.get_vision_tower()
    if not vision_tower.is_loaded:
        vision_tower.load_model(device_map=device_map)

    return model, tokenizer


class EndpointHandler:

    def __init__(self):
        model_path = './checkpoint-3000'
        disable_torch_init()
        model_path = os.path.expanduser(model_path)
        #print(model_path)
        model_name = get_model_name_from_path(model_path)

        model, tokenizer = load_model(model_path, device_map={"":0})

        #tokenizer, model, _, context_len = load_pretrained_model(model_path, None, model_name, device_map={"":0})
        image_processor = Blip2ImageTrainProcessor(
            image_size=model.config.img_size,
            is_training=False)

        """
        import os
        from PIL import Image
        input_dir = './v12044gd0000clg1n4fog65p7pag5n6g/video'
        image_paths = os.listdir(input_dir)
        images = [Image.open(os.path.join(input_dir, item)) for item in image_paths]
        num_segments = 10
        images = images[:num_segments]

        import torch
        device = torch.device('cuda:0')
        image_processor = Blip2ImageTrainProcessor(
            image_size=224,
            is_training=False)     
        images_tensor = [image_processor.preprocess(image).cpu().to(device) for image in images]
        """

        self.tokenizer = tokenizer
        self.device = torch.device('cpu')
        self.model = model.to(self.device)

        self.image_processor = image_processor
        self.conv_mode = 'v1'

    def inference_frames(self, images, question, temperature):
        
        if len(images) > 10:
            images = select_frames(images)

        conv_mode = self.conv_mode
        image_processor = self.image_processor
        # if isinstance(image_processor, CLIPImageProcessor):
        #     images_tensor = [image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0].cpu().to(self.device) for image in images]
        # else:
        #     logging.info(f'length of images:{len(images)}')
        #images_tensor = [image_processor.preprocess(image).cpu() for image in images]
        #images_tensor = torch.stack(images_tensor, dim=0).half().to(self.device)

        images_tensor = process_images_v2(images, image_processor, self.model.config)
        images_tensor = images_tensor.to(self.device)
        # print(images_tensor.shape)

        qs = question

        if len(images) == 1:
            qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
        else:
            qs = DEFAULT_VIDEO_START_TOKEN + DEFAULT_VIDEO_TOKEN + DEFAULT_VIDEO_END_TOKEN + '\n' + qs

        conv = conv_templates[conv_mode].copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = tokenizer_image_token(prompt, self.tokenizer, MM_TOKEN_INDEX, return_tensors='pt').unsqueeze(
            0).to(self.device)

        stop_str = conv.sep if conv.sep2 is None else conv.sep2
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, self.tokenizer, input_ids)

        with torch.inference_mode():
            output_ids = self.model.generate(
                input_ids,
                images=[images_tensor],
                temperature=temperature,
                do_sample=True,
                top_p=None,
                num_beams=1,
                no_repeat_ngram_size=3,
                max_new_tokens=1024,
                use_cache=True,
                stopping_criteria=[stopping_criteria],
                )


        outputs = self.tokenizer.decode(output_ids[0], skip_special_tokens=True).strip()

        outputs = outputs.strip()
        if outputs.endswith(conv.sep):
            outputs = outputs[:-len(stop_str)]
        outputs = outputs.strip()

        
        # outputs = outputs[3:-4].strip()

        return outputs

    def __call__(self, request):
        
        # Step 5: Unpack the data and convert back to PIL images
        packed_data= request['images'][0]
        unpacked_data = msgpack.unpackb(packed_data, raw=False)
        image_list = [Image.open(BytesIO(byte_data)) for byte_data in unpacked_data]
        prompt = request.get('prompt', [''.encode()])[0].decode()
        temperature = request.get('temperature', ['0.01'.encode()])[0].decode()
        temperature = float(temperature)

        #print(request)

        if prompt=='':
            if len(image_list) == 1:
                prompt =  "Please describe this image in detail."
            else:
                prompt =  "Please describe this video in detail."            
                # prompt =  "Describe the following video in detail."            
            
        with torch.no_grad():
            outputs = self.inference_frames(image_list, prompt, temperature)


        return {'output': [outputs]}


if __name__ == "__main__":
    video_dir = '/mnt/bn/yukunfeng-nasdrive/xiangchen/masp_data/20231110_ttp/video/v12044gd0000cl5c6rfog65i2eoqcqig'
    frames = [(int(os.path.splitext(item)[0]), os.path.join(video_dir, item)) for item in os.listdir(video_dir)]
    frames = [item[1] for item in sorted(frames, key=lambda x: x[0])]
    out_frames = [Image.open(frame).convert('RGB') for frame in frames]

    # out_frames = select_frames(frames)

    request = {}

    # Step 3: Convert images to byte format
    byte_images = []
    for img in out_frames:
        byte_io = BytesIO()
        img.save(byte_io, format='JPEG')
        byte_images.append(byte_io.getvalue())

    # Step 4: Pack the byte data with msgpack
    packed_data = msgpack.packb(byte_images)
    request['images'] = [packed_data]
    # request['temperature'] = ['0.2'.encode()]
    request['temperature'] = ['0.01'.encode()]
    # request['prompt'] = ['describe the image in detail'.encode()]

    #new_request = {}
    #new_request['0'] = request['2']
    handler = EndpointHandler()
    print(handler(request))