mtileria00 commited on
Commit
6359bb7
Β·
1 Parent(s): e156e7d
{fine_tune_10/1_Pooling β†’ 1_Pooling}/config.json RENAMED
File without changes
README.md CHANGED
@@ -1,3 +1,87 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
  ---
8
+
9
+ # {MODEL_NAME}
10
+
11
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
12
+
13
+ <!--- Describe your model here -->
14
+
15
+ ## Usage (Sentence-Transformers)
16
+
17
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
18
+
19
+ ```
20
+ pip install -U sentence-transformers
21
+ ```
22
+
23
+ Then you can use the model like this:
24
+
25
+ ```python
26
+ from sentence_transformers import SentenceTransformer
27
+ sentences = ["This is an example sentence", "Each sentence is converted"]
28
+
29
+ model = SentenceTransformer('{MODEL_NAME}')
30
+ embeddings = model.encode(sentences)
31
+ print(embeddings)
32
+ ```
33
+
34
+
35
+
36
+ ## Evaluation Results
37
+
38
+ <!--- Describe how your model was evaluated -->
39
+
40
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
41
+
42
+
43
+ ## Training
44
+ The model was trained with the parameters:
45
+
46
+ **DataLoader**:
47
+
48
+ `torch.utils.data.dataloader.DataLoader` of length 570 with parameters:
49
+ ```
50
+ {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
51
+ ```
52
+
53
+ **Loss**:
54
+
55
+ `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
56
+
57
+ Parameters of the fit()-Method:
58
+ ```
59
+ {
60
+ "epochs": 10,
61
+ "evaluation_steps": 1000,
62
+ "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
63
+ "max_grad_norm": 1,
64
+ "optimizer_class": "<class 'transformers.optimization.AdamW'>",
65
+ "optimizer_params": {
66
+ "lr": 2e-05
67
+ },
68
+ "scheduler": "WarmupLinear",
69
+ "steps_per_epoch": null,
70
+ "warmup_steps": 570,
71
+ "weight_decay": 0.01
72
+ }
73
+ ```
74
+
75
+
76
+ ## Full Model Architecture
77
+ ```
78
+ SentenceTransformer(
79
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
80
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
81
+ (2): Normalize()
82
+ )
83
+ ```
84
+
85
+ ## Citing & Authors
86
+
87
+ <!--- Describe where people can find more information -->
fine_tune_10/config.json β†’ config.json RENAMED
File without changes
fine_tune_10/config_sentence_transformers.json β†’ config_sentence_transformers.json RENAMED
File without changes
{fine_tune_10/eval β†’ eval}/similarity_evaluation_results.csv RENAMED
File without changes
fine_tune_10/README.md DELETED
@@ -1,87 +0,0 @@
1
- ---
2
- pipeline_tag: sentence-similarity
3
- tags:
4
- - sentence-transformers
5
- - feature-extraction
6
- - sentence-similarity
7
- ---
8
-
9
- # {MODEL_NAME}
10
-
11
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
12
-
13
- <!--- Describe your model here -->
14
-
15
- ## Usage (Sentence-Transformers)
16
-
17
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
18
-
19
- ```
20
- pip install -U sentence-transformers
21
- ```
22
-
23
- Then you can use the model like this:
24
-
25
- ```python
26
- from sentence_transformers import SentenceTransformer
27
- sentences = ["This is an example sentence", "Each sentence is converted"]
28
-
29
- model = SentenceTransformer('{MODEL_NAME}')
30
- embeddings = model.encode(sentences)
31
- print(embeddings)
32
- ```
33
-
34
-
35
-
36
- ## Evaluation Results
37
-
38
- <!--- Describe how your model was evaluated -->
39
-
40
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
41
-
42
-
43
- ## Training
44
- The model was trained with the parameters:
45
-
46
- **DataLoader**:
47
-
48
- `torch.utils.data.dataloader.DataLoader` of length 570 with parameters:
49
- ```
50
- {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
51
- ```
52
-
53
- **Loss**:
54
-
55
- `sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
56
-
57
- Parameters of the fit()-Method:
58
- ```
59
- {
60
- "epochs": 10,
61
- "evaluation_steps": 1000,
62
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
63
- "max_grad_norm": 1,
64
- "optimizer_class": "<class 'transformers.optimization.AdamW'>",
65
- "optimizer_params": {
66
- "lr": 2e-05
67
- },
68
- "scheduler": "WarmupLinear",
69
- "steps_per_epoch": null,
70
- "warmup_steps": 570,
71
- "weight_decay": 0.01
72
- }
73
- ```
74
-
75
-
76
- ## Full Model Architecture
77
- ```
78
- SentenceTransformer(
79
- (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
80
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
81
- (2): Normalize()
82
- )
83
- ```
84
-
85
- ## Citing & Authors
86
-
87
- <!--- Describe where people can find more information -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fine_tune_10/modules.json β†’ modules.json RENAMED
File without changes
fine_tune_10/pytorch_model.bin β†’ pytorch_model.bin RENAMED
File without changes
fine_tune_10/sentence_bert_config.json β†’ sentence_bert_config.json RENAMED
File without changes
fine_tune_10/special_tokens_map.json β†’ special_tokens_map.json RENAMED
File without changes
fine_tune_10/tokenizer.json β†’ tokenizer.json RENAMED
File without changes
fine_tune_10/tokenizer_config.json β†’ tokenizer_config.json RENAMED
File without changes
fine_tune_10/vocab.txt β†’ vocab.txt RENAMED
File without changes