Commit
Β·
6359bb7
1
Parent(s):
e156e7d
fix path
Browse files- {fine_tune_10/1_Pooling β 1_Pooling}/config.json +0 -0
- README.md +85 -1
- fine_tune_10/config.json β config.json +0 -0
- fine_tune_10/config_sentence_transformers.json β config_sentence_transformers.json +0 -0
- {fine_tune_10/eval β eval}/similarity_evaluation_results.csv +0 -0
- fine_tune_10/README.md +0 -87
- fine_tune_10/modules.json β modules.json +0 -0
- fine_tune_10/pytorch_model.bin β pytorch_model.bin +0 -0
- fine_tune_10/sentence_bert_config.json β sentence_bert_config.json +0 -0
- fine_tune_10/special_tokens_map.json β special_tokens_map.json +0 -0
- fine_tune_10/tokenizer.json β tokenizer.json +0 -0
- fine_tune_10/tokenizer_config.json β tokenizer_config.json +0 -0
- fine_tune_10/vocab.txt β vocab.txt +0 -0
{fine_tune_10/1_Pooling β 1_Pooling}/config.json
RENAMED
File without changes
|
README.md
CHANGED
@@ -1,3 +1,87 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
---
|
8 |
+
|
9 |
+
# {MODEL_NAME}
|
10 |
+
|
11 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
12 |
+
|
13 |
+
<!--- Describe your model here -->
|
14 |
+
|
15 |
+
## Usage (Sentence-Transformers)
|
16 |
+
|
17 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
18 |
+
|
19 |
+
```
|
20 |
+
pip install -U sentence-transformers
|
21 |
+
```
|
22 |
+
|
23 |
+
Then you can use the model like this:
|
24 |
+
|
25 |
+
```python
|
26 |
+
from sentence_transformers import SentenceTransformer
|
27 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
28 |
+
|
29 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
30 |
+
embeddings = model.encode(sentences)
|
31 |
+
print(embeddings)
|
32 |
+
```
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
## Evaluation Results
|
37 |
+
|
38 |
+
<!--- Describe how your model was evaluated -->
|
39 |
+
|
40 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
41 |
+
|
42 |
+
|
43 |
+
## Training
|
44 |
+
The model was trained with the parameters:
|
45 |
+
|
46 |
+
**DataLoader**:
|
47 |
+
|
48 |
+
`torch.utils.data.dataloader.DataLoader` of length 570 with parameters:
|
49 |
+
```
|
50 |
+
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
51 |
+
```
|
52 |
+
|
53 |
+
**Loss**:
|
54 |
+
|
55 |
+
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
56 |
+
|
57 |
+
Parameters of the fit()-Method:
|
58 |
+
```
|
59 |
+
{
|
60 |
+
"epochs": 10,
|
61 |
+
"evaluation_steps": 1000,
|
62 |
+
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
63 |
+
"max_grad_norm": 1,
|
64 |
+
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
65 |
+
"optimizer_params": {
|
66 |
+
"lr": 2e-05
|
67 |
+
},
|
68 |
+
"scheduler": "WarmupLinear",
|
69 |
+
"steps_per_epoch": null,
|
70 |
+
"warmup_steps": 570,
|
71 |
+
"weight_decay": 0.01
|
72 |
+
}
|
73 |
+
```
|
74 |
+
|
75 |
+
|
76 |
+
## Full Model Architecture
|
77 |
+
```
|
78 |
+
SentenceTransformer(
|
79 |
+
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
|
80 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
81 |
+
(2): Normalize()
|
82 |
+
)
|
83 |
+
```
|
84 |
+
|
85 |
+
## Citing & Authors
|
86 |
+
|
87 |
+
<!--- Describe where people can find more information -->
|
fine_tune_10/config.json β config.json
RENAMED
File without changes
|
fine_tune_10/config_sentence_transformers.json β config_sentence_transformers.json
RENAMED
File without changes
|
{fine_tune_10/eval β eval}/similarity_evaluation_results.csv
RENAMED
File without changes
|
fine_tune_10/README.md
DELETED
@@ -1,87 +0,0 @@
|
|
1 |
-
---
|
2 |
-
pipeline_tag: sentence-similarity
|
3 |
-
tags:
|
4 |
-
- sentence-transformers
|
5 |
-
- feature-extraction
|
6 |
-
- sentence-similarity
|
7 |
-
---
|
8 |
-
|
9 |
-
# {MODEL_NAME}
|
10 |
-
|
11 |
-
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
12 |
-
|
13 |
-
<!--- Describe your model here -->
|
14 |
-
|
15 |
-
## Usage (Sentence-Transformers)
|
16 |
-
|
17 |
-
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
18 |
-
|
19 |
-
```
|
20 |
-
pip install -U sentence-transformers
|
21 |
-
```
|
22 |
-
|
23 |
-
Then you can use the model like this:
|
24 |
-
|
25 |
-
```python
|
26 |
-
from sentence_transformers import SentenceTransformer
|
27 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
28 |
-
|
29 |
-
model = SentenceTransformer('{MODEL_NAME}')
|
30 |
-
embeddings = model.encode(sentences)
|
31 |
-
print(embeddings)
|
32 |
-
```
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
## Evaluation Results
|
37 |
-
|
38 |
-
<!--- Describe how your model was evaluated -->
|
39 |
-
|
40 |
-
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
41 |
-
|
42 |
-
|
43 |
-
## Training
|
44 |
-
The model was trained with the parameters:
|
45 |
-
|
46 |
-
**DataLoader**:
|
47 |
-
|
48 |
-
`torch.utils.data.dataloader.DataLoader` of length 570 with parameters:
|
49 |
-
```
|
50 |
-
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
51 |
-
```
|
52 |
-
|
53 |
-
**Loss**:
|
54 |
-
|
55 |
-
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
56 |
-
|
57 |
-
Parameters of the fit()-Method:
|
58 |
-
```
|
59 |
-
{
|
60 |
-
"epochs": 10,
|
61 |
-
"evaluation_steps": 1000,
|
62 |
-
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
|
63 |
-
"max_grad_norm": 1,
|
64 |
-
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
|
65 |
-
"optimizer_params": {
|
66 |
-
"lr": 2e-05
|
67 |
-
},
|
68 |
-
"scheduler": "WarmupLinear",
|
69 |
-
"steps_per_epoch": null,
|
70 |
-
"warmup_steps": 570,
|
71 |
-
"weight_decay": 0.01
|
72 |
-
}
|
73 |
-
```
|
74 |
-
|
75 |
-
|
76 |
-
## Full Model Architecture
|
77 |
-
```
|
78 |
-
SentenceTransformer(
|
79 |
-
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
|
80 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
81 |
-
(2): Normalize()
|
82 |
-
)
|
83 |
-
```
|
84 |
-
|
85 |
-
## Citing & Authors
|
86 |
-
|
87 |
-
<!--- Describe where people can find more information -->
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fine_tune_10/modules.json β modules.json
RENAMED
File without changes
|
fine_tune_10/pytorch_model.bin β pytorch_model.bin
RENAMED
File without changes
|
fine_tune_10/sentence_bert_config.json β sentence_bert_config.json
RENAMED
File without changes
|
fine_tune_10/special_tokens_map.json β special_tokens_map.json
RENAMED
File without changes
|
fine_tune_10/tokenizer.json β tokenizer.json
RENAMED
File without changes
|
fine_tune_10/tokenizer_config.json β tokenizer_config.json
RENAMED
File without changes
|
fine_tune_10/vocab.txt β vocab.txt
RENAMED
File without changes
|