msgfrom96 commited on
Commit
3473893
·
verified ·
1 Parent(s): 35e4ed6

msgfrom96/xlm_emo_multi_improved

Browse files
README.md ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: xlm-roberta-large
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: emotion_model_improved
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # emotion_model_improved
18
+
19
+ This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.2881
22
+ - Macro F1: 0.5947
23
+ - Micro F1: 0.6896
24
+ - Accuracy: 0.8522
25
+ - F1 Anger: 0.8051
26
+ - Precision Anger: 0.7756
27
+ - Recall Anger: 0.8368
28
+ - F1 Anticipation: 0.3591
29
+ - Precision Anticipation: 0.3484
30
+ - Recall Anticipation: 0.3705
31
+ - F1 Disgust: 0.7122
32
+ - Precision Disgust: 0.6203
33
+ - Recall Disgust: 0.8360
34
+ - F1 Fear: 0.7222
35
+ - Precision Fear: 0.6506
36
+ - Recall Fear: 0.8115
37
+ - F1 Joy: 0.8601
38
+ - Precision Joy: 0.8641
39
+ - Recall Joy: 0.8561
40
+ - F1 Sadness: 0.7075
41
+ - Precision Sadness: 0.6030
42
+ - Recall Sadness: 0.8558
43
+ - F1 Surprise: 0.2393
44
+ - Precision Surprise: 0.3305
45
+ - Recall Surprise: 0.1875
46
+ - F1 Trust: 0.2643
47
+ - Precision Trust: 0.2242
48
+ - Recall Trust: 0.3217
49
+ - F1 Love: 0.6566
50
+ - Precision Love: 0.7855
51
+ - Recall Love: 0.5640
52
+ - F1 Optimism: 0.7413
53
+ - Precision Optimism: 0.7730
54
+ - Recall Optimism: 0.7122
55
+ - F1 Pessimism: 0.4745
56
+ - Precision Pessimism: 0.3367
57
+ - Recall Pessimism: 0.8032
58
+ - Positive Predictions Pct: 25.8683
59
+ - Positive Labels Pct: 21.7367
60
+
61
+ ## Model description
62
+
63
+ More information needed
64
+
65
+ ## Intended uses & limitations
66
+
67
+ More information needed
68
+
69
+ ## Training and evaluation data
70
+
71
+ More information needed
72
+
73
+ ## Training procedure
74
+
75
+ ### Training hyperparameters
76
+
77
+ The following hyperparameters were used during training:
78
+ - learning_rate: 8e-06
79
+ - train_batch_size: 32
80
+ - eval_batch_size: 64
81
+ - seed: 42
82
+ - gradient_accumulation_steps: 4
83
+ - total_train_batch_size: 128
84
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
85
+ - lr_scheduler_type: cosine
86
+ - lr_scheduler_warmup_ratio: 0.1
87
+ - num_epochs: 15
88
+ - mixed_precision_training: Native AMP
89
+
90
+ ### Training results
91
+
92
+ | Training Loss | Epoch | Step | Validation Loss | Macro F1 | Micro F1 | Accuracy | F1 Anger | Precision Anger | Recall Anger | F1 Anticipation | Precision Anticipation | Recall Anticipation | F1 Disgust | Precision Disgust | Recall Disgust | F1 Fear | Precision Fear | Recall Fear | F1 Joy | Precision Joy | Recall Joy | F1 Sadness | Precision Sadness | Recall Sadness | F1 Surprise | Precision Surprise | Recall Surprise | F1 Trust | Precision Trust | Recall Trust | F1 Love | Precision Love | Recall Love | F1 Optimism | Precision Optimism | Recall Optimism | F1 Pessimism | Precision Pessimism | Recall Pessimism | Positive Predictions Pct | Positive Labels Pct |
93
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:--------:|:--------:|:---------------:|:------------:|:---------------:|:----------------------:|:-------------------:|:----------:|:-----------------:|:--------------:|:-------:|:--------------:|:-----------:|:------:|:-------------:|:----------:|:----------:|:-----------------:|:--------------:|:-----------:|:------------------:|:---------------:|:--------:|:---------------:|:------------:|:-------:|:--------------:|:-----------:|:-----------:|:------------------:|:---------------:|:------------:|:-------------------:|:----------------:|:------------------------:|:-------------------:|
94
+ | 0.6834 | 1.0 | 72 | 0.4816 | 0.2295 | 0.4570 | 0.6345 | 0.5297 | 0.3603 | 1.0 | 0.0 | 0.0 | 0.0 | 0.4483 | 0.2889 | 1.0 | 0.0 | 0.0 | 0.0 | 0.5649 | 0.3936 | 1.0 | 0.4936 | 0.3277 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4884 | 0.3238 | 0.9937 | 0.0 | 0.0 | 0.0 | 45.3927 | 21.9208 |
95
+ | 0.4738 | 2.0 | 144 | 0.3507 | 0.4607 | 0.6320 | 0.7951 | 0.7069 | 0.5593 | 0.9604 | 0.0 | 0.0 | 0.0 | 0.6359 | 0.4807 | 0.9388 | 0.4906 | 0.3694 | 0.7302 | 0.8185 | 0.7592 | 0.8877 | 0.6246 | 0.4692 | 0.9336 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6323 | 0.5235 | 0.7980 | 0.7368 | 0.6486 | 0.8529 | 0.4223 | 0.2951 | 0.7422 | 33.7556 | 21.9208 |
96
+ | 0.3445 | 3.0 | 216 | 0.3131 | 0.5845 | 0.6929 | 0.8585 | 0.7807 | 0.8 | 0.7623 | 0.3463 | 0.4804 | 0.2707 | 0.7273 | 0.6953 | 0.7624 | 0.7003 | 0.7637 | 0.6465 | 0.8477 | 0.8140 | 0.8843 | 0.7385 | 0.6994 | 0.7822 | 0.1839 | 0.2051 | 0.1667 | 0.2020 | 0.1360 | 0.3924 | 0.6915 | 0.6374 | 0.7557 | 0.7637 | 0.7268 | 0.8046 | 0.4473 | 0.3785 | 0.5467 | 24.1394 | 21.9208 |
97
+ | 0.3076 | 4.0 | 288 | 0.3035 | 0.5792 | 0.6867 | 0.8561 | 0.7741 | 0.7691 | 0.7792 | 0.3486 | 0.3904 | 0.3149 | 0.7255 | 0.6826 | 0.7741 | 0.6789 | 0.7818 | 0.6 | 0.8348 | 0.7760 | 0.9033 | 0.7201 | 0.7044 | 0.7365 | 0.2316 | 0.2340 | 0.2292 | 0.1949 | 0.1364 | 0.3418 | 0.6912 | 0.6792 | 0.7036 | 0.7587 | 0.7018 | 0.8256 | 0.4125 | 0.3882 | 0.44 | 24.0158 | 21.9208 |
98
+ | 0.2836 | 5.0 | 360 | 0.2969 | 0.6002 | 0.7045 | 0.8648 | 0.7859 | 0.7927 | 0.7792 | 0.3462 | 0.4122 | 0.2983 | 0.7387 | 0.6950 | 0.7882 | 0.7364 | 0.6926 | 0.7860 | 0.8543 | 0.8160 | 0.8964 | 0.7339 | 0.7137 | 0.7552 | 0.2735 | 0.2319 | 0.3333 | 0.2190 | 0.1756 | 0.2911 | 0.6983 | 0.6779 | 0.7199 | 0.7653 | 0.7440 | 0.7878 | 0.4508 | 0.3927 | 0.5289 | 23.8366 | 21.9208 |
99
+ | 0.27 | 6.0 | 432 | 0.2930 | 0.6238 | 0.6993 | 0.8541 | 0.8007 | 0.7733 | 0.8302 | 0.3858 | 0.4167 | 0.3591 | 0.7349 | 0.6604 | 0.8282 | 0.7578 | 0.7316 | 0.7860 | 0.8506 | 0.8412 | 0.8601 | 0.7366 | 0.7045 | 0.7718 | 0.4051 | 0.5161 | 0.3333 | 0.2334 | 0.1477 | 0.5570 | 0.7170 | 0.6466 | 0.8046 | 0.7745 | 0.7596 | 0.7899 | 0.4650 | 0.3395 | 0.7378 | 26.5991 | 21.9208 |
100
+ | 0.2587 | 7.0 | 504 | 0.2888 | 0.6137 | 0.6969 | 0.8525 | 0.7948 | 0.7756 | 0.8151 | 0.3526 | 0.3697 | 0.3370 | 0.7387 | 0.6667 | 0.8282 | 0.7348 | 0.7704 | 0.7023 | 0.8528 | 0.8406 | 0.8653 | 0.7384 | 0.6776 | 0.8112 | 0.3505 | 0.3469 | 0.3542 | 0.2185 | 0.1403 | 0.4937 | 0.7166 | 0.6524 | 0.7948 | 0.7703 | 0.7370 | 0.8067 | 0.4831 | 0.3532 | 0.7644 | 26.7474 | 21.9208 |
101
+ | 0.248 | 8.0 | 576 | 0.2865 | 0.6177 | 0.6960 | 0.8520 | 0.7923 | 0.7691 | 0.8170 | 0.3802 | 0.3596 | 0.4033 | 0.7329 | 0.6712 | 0.8071 | 0.7379 | 0.7716 | 0.7070 | 0.8560 | 0.8219 | 0.8929 | 0.7317 | 0.7096 | 0.7552 | 0.3738 | 0.3390 | 0.4167 | 0.2259 | 0.1444 | 0.5190 | 0.7233 | 0.6486 | 0.8176 | 0.7671 | 0.7261 | 0.8130 | 0.4734 | 0.3548 | 0.7111 | 26.7598 | 21.9208 |
102
+ | 0.2404 | 9.0 | 648 | 0.2865 | 0.6219 | 0.7087 | 0.8617 | 0.7959 | 0.7900 | 0.8019 | 0.3913 | 0.3850 | 0.3978 | 0.7417 | 0.6811 | 0.8141 | 0.7489 | 0.6902 | 0.8186 | 0.8579 | 0.8361 | 0.8808 | 0.7390 | 0.6831 | 0.8050 | 0.3542 | 0.3542 | 0.3542 | 0.2368 | 0.1812 | 0.3418 | 0.7254 | 0.7721 | 0.6840 | 0.7747 | 0.7525 | 0.7983 | 0.475 | 0.3455 | 0.76 | 25.5547 | 21.9208 |
103
+
104
+
105
+ ### Framework versions
106
+
107
+ - Transformers 4.48.2
108
+ - Pytorch 2.3.1.post300
109
+ - Datasets 2.2.1
110
+ - Tokenizers 0.21.0
config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "xlm-roberta-large",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "id2label": {
14
+ "0": "anger",
15
+ "1": "anticipation",
16
+ "2": "disgust",
17
+ "3": "fear",
18
+ "4": "joy",
19
+ "5": "sadness",
20
+ "6": "surprise",
21
+ "7": "trust",
22
+ "8": "love",
23
+ "9": "optimism",
24
+ "10": "pessimism"
25
+ },
26
+ "initializer_range": 0.02,
27
+ "intermediate_size": 4096,
28
+ "label2id": {
29
+ "anger": 0,
30
+ "anticipation": 1,
31
+ "disgust": 2,
32
+ "fear": 3,
33
+ "joy": 4,
34
+ "love": 8,
35
+ "optimism": 9,
36
+ "pessimism": 10,
37
+ "sadness": 5,
38
+ "surprise": 6,
39
+ "trust": 7
40
+ },
41
+ "layer_norm_eps": 1e-05,
42
+ "max_position_embeddings": 514,
43
+ "model_type": "xlm-roberta",
44
+ "num_attention_heads": 16,
45
+ "num_hidden_layers": 24,
46
+ "output_past": true,
47
+ "pad_token_id": 1,
48
+ "position_embedding_type": "absolute",
49
+ "problem_type": "multi_label_classification",
50
+ "torch_dtype": "float32",
51
+ "transformers_version": "4.48.2",
52
+ "type_vocab_size": 1,
53
+ "use_cache": true,
54
+ "vocab_size": 250002
55
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ae55f8ecd88415a39d7b74fca17290c63a0759c9b5d05886d602aeb261108c8
3
+ size 2239655572
thresholds.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"thresholds": [0.3678717017173767, 0.19193291664123535, 0.3201530873775482, 0.43696150183677673, 0.34174644947052, 0.3442804515361786, 0.15672166645526886, 0.10731738805770874, 0.28868183493614197, 0.4694070518016815, 0.18090945482254028], "emotions": ["anger", "anticipation", "disgust", "fear", "joy", "sadness", "surprise", "trust", "love", "optimism", "pessimism"]}
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf4b68cb6d4e4cbac213b3c4b62d9a55bcbf5cfaee34ec62df5739f7bc940664
3
+ size 5304
xlm_multi_emo/config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "xlm-roberta-large",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "id2label": {
14
+ "0": "anger",
15
+ "1": "anticipation",
16
+ "2": "disgust",
17
+ "3": "fear",
18
+ "4": "joy",
19
+ "5": "sadness",
20
+ "6": "surprise",
21
+ "7": "trust",
22
+ "8": "love",
23
+ "9": "optimism",
24
+ "10": "pessimism"
25
+ },
26
+ "initializer_range": 0.02,
27
+ "intermediate_size": 4096,
28
+ "label2id": {
29
+ "anger": 0,
30
+ "anticipation": 1,
31
+ "disgust": 2,
32
+ "fear": 3,
33
+ "joy": 4,
34
+ "love": 8,
35
+ "optimism": 9,
36
+ "pessimism": 10,
37
+ "sadness": 5,
38
+ "surprise": 6,
39
+ "trust": 7
40
+ },
41
+ "layer_norm_eps": 1e-05,
42
+ "max_position_embeddings": 514,
43
+ "model_type": "xlm-roberta",
44
+ "num_attention_heads": 16,
45
+ "num_hidden_layers": 24,
46
+ "output_past": true,
47
+ "pad_token_id": 1,
48
+ "position_embedding_type": "absolute",
49
+ "problem_type": "multi_label_classification",
50
+ "torch_dtype": "float32",
51
+ "transformers_version": "4.48.2",
52
+ "type_vocab_size": 1,
53
+ "use_cache": true,
54
+ "vocab_size": 250002
55
+ }
xlm_multi_emo/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ae55f8ecd88415a39d7b74fca17290c63a0759c9b5d05886d602aeb261108c8
3
+ size 2239655572
xlm_multi_emo/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf4b68cb6d4e4cbac213b3c4b62d9a55bcbf5cfaee34ec62df5739f7bc940664
3
+ size 5304