File size: 6,841 Bytes
ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca 556144a ae0e8ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
---
library_name: peft
base_model: deepseek-ai/deepseek-coder-6.7b-instruct
license: mit
language:
- en
---
# Model Card for Model ID
Fine-tuned version of `deepseek-coder-6.7b-instruct` aiming to improve vulnerability detection in solidity smart contracts and provide informative explanations on what the vulnerabilities are, and how to solve them.
## Model Details
### Model Description
Given the following prompt below:
```
Below are one or more Solidity codeblocks. The codeblocks might contain vulnerable code.
If there is a vulnerability please provide a description of the vulnearblity in terms of the code that is responsible for it.
Describe how an attacker would be able to take advantage of the vulnerability so the explanation is even more clear.
Output only the description of the vulnerability and the attacking vector. No additional information is needed.
If there is no vulnerability output "There is no vulnearbility".
Codeblocks:
{}
```
When 1 or more codeblocks are provided to the model using this prompt, the model will output:
1. Wether there is a vulnerability or not.
2. What the vulnerability is.
3. How an attacker would take advantage of the detected vulnerability.
Afterwards, the above output can be chained to produce a solution - the context has the code, the vulnerability and the attacking vector so deducing a solution becomes a more straight-forward task.
Additionally, the same fine-tuned model can be used for the solution recommendation as the fine-tuning is low-rank (LoRA) and a lot of the model ability is preserved.
- **Developed by:** [Kristian Apostolov]
- **Shared by:** [Kristian Apostolov]
- **Model type:** [Decoder]
- **Language(s) (NLP):** [English]
- **License:** [MIT]
- **Finetuned from model:** [deepseek-ai/deepseek-coder-6.7b-instruct]
### Model Sources [optional]
- **Repository:** [https://huggingface.co/msc-smart-contract-auditing/deepseek-coder-6.7b-vulnerability-detection]
## Uses
Provide code from a smart contract for a preliminary audit.
### Direct Use
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
Malicious entity could detect 0-day vulnerability and take advantage of it.
## Bias, Risks, and Limitations
The training data could be improved. Audits sometimes describe vulnerabilities which are not necessarily contained in the code itself, but are a part of a larger context.
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
model_name = 'msc-smart-contract-auditing/deepseek-coder-6.7b-vulnerability'
tokenizer = AutoTokenizer.from_pretrained( # For some reason the tokenizer didn't safe properly
"deepseek-ai/deepseek-coder-6.7b-instruct",
trust_remote_code=True,
force_download=True,
)
prompt = \
"""
Below are one or more Solidity codeblocks. The codeblocks might contain vulnerable code.
If there is a vulnerability please provide a description of the vulnearblity in terms of the code that is responsible for it.
Describe how an attacker would be able to take advantage of the vulnerability so the explanation is even more clear.
Output only the description of the vulnerability and the attacking vector. No additional information is needed.
If there is no vulnerability output "There is no vulnearbility".
Codeblocks:
{}
"""
codeblocks = "Your code here"
messages = [
{ 'role': 'user', 'content': prompt.format(codeblocks) }
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=512, do_sample=True, top_k=25, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
description = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
print(description)
```
## Training Details
### Training Data
https://huggingface.co/datasets/msc-smart-contract-auditing/audits-with-reasons
### Training Procedure
lora_config = LoraConfig(
r=16, # rank
lora_alpha=32, # scaling factor
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",],
lora_dropout=0.05, # dropout rate for LoRA layers
)
model = get_peft_model(model, lora_config)
from transformers import Trainer, TrainingArguments
trainer = Trainer(
model=model,
args=TrainingArguments(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 4,
warmup_steps = 5,
num_train_epochs = 1,
learning_rate = 2e-4,
fp16 = True,
logging_steps = 1,
optim = "adamw_8bit",
weight_decay = 0.01,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "outputs",
),
train_dataset=train_prompts,
eval_dataset=test_prompts,
)
#### Training Hyperparameters
- **Training regime:** fp16 mixed precision
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
https://huggingface.co/datasets/msc-smart-contract-auditing/audits-with-reasons
#### Factors
[More Information Needed]
#### Metrics
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.11.1 |