Update README.md
Browse filesGradio code updated
README.md
CHANGED
@@ -99,16 +99,14 @@ Output: Bullish:38751.32,38818.6,38818.6,38695.03
|
|
99 |
import sys
|
100 |
import torch
|
101 |
from peft import PeftModel
|
102 |
-
import
|
|
|
|
|
|
|
|
|
103 |
import gradio as gr
|
104 |
|
105 |
-
|
106 |
-
"LlamaTokenizer" in transformers._import_structure["models.llama"]
|
107 |
-
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
|
108 |
-
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
|
109 |
-
|
110 |
-
|
111 |
-
SHARE_GRADIO=True
|
112 |
LOAD_8BIT = False
|
113 |
|
114 |
BASE_MODEL = "mrzlab630/weights_Llama_7b"
|
@@ -116,16 +114,9 @@ LORA_WEIGHTS = "mrzlab630/lora-alpaca-trading-candles"
|
|
116 |
|
117 |
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
|
118 |
|
119 |
-
if torch.cuda.is_available()
|
120 |
-
|
121 |
-
|
122 |
-
device = "cpu"
|
123 |
-
|
124 |
-
try:
|
125 |
-
if torch.backends.mps.is_available():
|
126 |
-
device = "mps"
|
127 |
-
except:
|
128 |
-
pass
|
129 |
|
130 |
if device == "cuda":
|
131 |
model = LlamaForCausalLM.from_pretrained(
|
@@ -161,6 +152,12 @@ else:
|
|
161 |
device_map={"": device},
|
162 |
)
|
163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
def generate_prompt(instruction, input=None):
|
166 |
if input:
|
@@ -181,14 +178,6 @@ def generate_prompt(instruction, input=None):
|
|
181 |
|
182 |
### Response:"""
|
183 |
|
184 |
-
if not LOAD_8BIT:
|
185 |
-
model.half() # seems to fix bugs for some users.
|
186 |
-
|
187 |
-
model.eval()
|
188 |
-
if torch.__version__ >= "2" and sys.platform != "win32":
|
189 |
-
model = torch.compile(model)
|
190 |
-
|
191 |
-
|
192 |
def evaluate(
|
193 |
instruction,
|
194 |
input=None,
|
@@ -221,31 +210,22 @@ def evaluate(
|
|
221 |
output = tokenizer.decode(s)
|
222 |
return output.split("### Response:")[1].strip()
|
223 |
|
224 |
-
|
225 |
gr.Interface(
|
226 |
fn=evaluate,
|
227 |
inputs=[
|
228 |
-
gr.
|
229 |
-
|
230 |
-
),
|
231 |
-
gr.
|
232 |
-
gr.
|
233 |
-
gr.
|
234 |
-
gr.
|
235 |
-
gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
|
236 |
-
gr.components.Slider(
|
237 |
-
minimum=1, maximum=2000, step=1, value=128, label="Max tokens"
|
238 |
-
),
|
239 |
-
],
|
240 |
-
outputs=[
|
241 |
-
gr.inputs.Textbox(
|
242 |
-
lines=5,
|
243 |
-
label="Output",
|
244 |
-
)
|
245 |
],
|
|
|
246 |
title="💹 🕯 Alpaca-LoRA-Trading-Candles",
|
247 |
-
description="Alpaca-LoRA-Trading-Candles is a 7B-parameter LLaMA model tuned to execute instructions. It is trained on the [trading candles]
|
248 |
).launch(server_name="0.0.0.0", share=SHARE_GRADIO)
|
249 |
|
250 |
|
|
|
251 |
```
|
|
|
99 |
import sys
|
100 |
import torch
|
101 |
from peft import PeftModel
|
102 |
+
from transformers import (
|
103 |
+
LlamaTokenizer,
|
104 |
+
LlamaForCausalLM,
|
105 |
+
GenerationConfig
|
106 |
+
)
|
107 |
import gradio as gr
|
108 |
|
109 |
+
SHARE_GRADIO = True
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
LOAD_8BIT = False
|
111 |
|
112 |
BASE_MODEL = "mrzlab630/weights_Llama_7b"
|
|
|
114 |
|
115 |
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
|
116 |
|
117 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
118 |
+
if torch.backends.mps.is_available():
|
119 |
+
device = "mps"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
if device == "cuda":
|
122 |
model = LlamaForCausalLM.from_pretrained(
|
|
|
152 |
device_map={"": device},
|
153 |
)
|
154 |
|
155 |
+
if not LOAD_8BIT:
|
156 |
+
model.half()
|
157 |
+
|
158 |
+
model.eval()
|
159 |
+
if torch.__version__ >= "2" and sys.platform != "win32":
|
160 |
+
model = torch.compile(model)
|
161 |
|
162 |
def generate_prompt(instruction, input=None):
|
163 |
if input:
|
|
|
178 |
|
179 |
### Response:"""
|
180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
def evaluate(
|
182 |
instruction,
|
183 |
input=None,
|
|
|
210 |
output = tokenizer.decode(s)
|
211 |
return output.split("### Response:")[1].strip()
|
212 |
|
|
|
213 |
gr.Interface(
|
214 |
fn=evaluate,
|
215 |
inputs=[
|
216 |
+
gr.Textbox(lines=2, label="Instruction", placeholder="Tell me about alpacas."),
|
217 |
+
gr.Textbox(lines=2, label="Input", placeholder="none"),
|
218 |
+
gr.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
|
219 |
+
gr.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
|
220 |
+
gr.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
|
221 |
+
gr.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
|
222 |
+
gr.Slider(minimum=1, maximum=2000, step=1, value=128, label="Max tokens"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
],
|
224 |
+
outputs=gr.Textbox(lines=5, label="Output"),
|
225 |
title="💹 🕯 Alpaca-LoRA-Trading-Candles",
|
226 |
+
description="""Alpaca-LoRA-Trading-Candles is a 7B-parameter LLaMA model tuned to execute instructions. It is trained on the [trading candles](https://huggingface.co/datasets/mrzlab630/trading-candles) dataset and uses the Huggingface LLaMA implementation. For more information, visit [project website](https://huggingface.co/mrzlab630/lora-alpaca-trading-candles).""",
|
227 |
).launch(server_name="0.0.0.0", share=SHARE_GRADIO)
|
228 |
|
229 |
|
230 |
+
|
231 |
```
|