Create modeling_gpt2_mq.py
Browse files- modeling_gpt2_mq.py +346 -0
modeling_gpt2_mq.py
ADDED
|
@@ -0,0 +1,346 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""PyTorch OpenAI GPT-2 model modified with MultiQuery attention"""
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
import math
|
| 5 |
+
import os
|
| 6 |
+
from dataclasses import dataclass
|
| 7 |
+
from typing import Optional, Tuple, Union
|
| 8 |
+
|
| 9 |
+
import torch
|
| 10 |
+
import torch.utils.checkpoint
|
| 11 |
+
from torch import nn
|
| 12 |
+
from torch.cuda.amp import autocast
|
| 13 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 14 |
+
|
| 15 |
+
from transformers.activations import ACT2FN
|
| 16 |
+
from transformers.modeling_outputs import (
|
| 17 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 18 |
+
CausalLMOutputWithCrossAttentions,
|
| 19 |
+
SequenceClassifierOutputWithPast,
|
| 20 |
+
TokenClassifierOutput,
|
| 21 |
+
)
|
| 22 |
+
from transformers.modeling_utils import PreTrainedModel, SequenceSummary
|
| 23 |
+
from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
|
| 24 |
+
|
| 25 |
+
from transformers.utils import (
|
| 26 |
+
ModelOutput,
|
| 27 |
+
add_code_sample_docstrings,
|
| 28 |
+
add_start_docstrings,
|
| 29 |
+
add_start_docstrings_to_model_forward,
|
| 30 |
+
logging,
|
| 31 |
+
replace_return_docstrings,
|
| 32 |
+
)
|
| 33 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
| 34 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2Model, GPT2Block, GPT2PreTrainedModel, GPT2LMHeadModel
|
| 35 |
+
from .configuration_gpt2_mq import GPT2CustomConfig, MULTI_QUERY, MULTI_HEAD
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class GPT2MQAttention(nn.Module):
|
| 40 |
+
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
| 41 |
+
super().__init__()
|
| 42 |
+
assert config.attention_head_type == MULTI_QUERY
|
| 43 |
+
|
| 44 |
+
max_positions = config.max_position_embeddings
|
| 45 |
+
self.register_buffer(
|
| 46 |
+
"bias",
|
| 47 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view(
|
| 48 |
+
1, 1, max_positions, max_positions
|
| 49 |
+
),
|
| 50 |
+
)
|
| 51 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4))
|
| 52 |
+
|
| 53 |
+
self.embed_dim = config.hidden_size
|
| 54 |
+
self.num_heads = config.num_attention_heads
|
| 55 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 56 |
+
self.split_size = self.embed_dim
|
| 57 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 58 |
+
raise ValueError(
|
| 59 |
+
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
| 60 |
+
f" {self.num_heads})."
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
self.scale_attn_weights = config.scale_attn_weights
|
| 64 |
+
if is_cross_attention:
|
| 65 |
+
raise NotImplementedError("Cross-attention not implemented for MQA")
|
| 66 |
+
self.is_cross_attention = is_cross_attention
|
| 67 |
+
|
| 68 |
+
# Layer-wise attention scaling, reordering, and upcasting
|
| 69 |
+
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
|
| 70 |
+
self.layer_idx = layer_idx
|
| 71 |
+
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
|
| 72 |
+
|
| 73 |
+
if self.is_cross_attention:
|
| 74 |
+
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
|
| 75 |
+
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
|
| 76 |
+
else:
|
| 77 |
+
# self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
|
| 78 |
+
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
|
| 79 |
+
# Keys and values are shared across heads
|
| 80 |
+
self.kv_attn = Conv1D(2 * self.head_dim, self.embed_dim)
|
| 81 |
+
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
|
| 82 |
+
|
| 83 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
| 84 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
| 85 |
+
|
| 86 |
+
self.pruned_heads = set()
|
| 87 |
+
|
| 88 |
+
def prune_heads(self, heads):
|
| 89 |
+
if len(heads) == 0:
|
| 90 |
+
return
|
| 91 |
+
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
|
| 92 |
+
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
|
| 93 |
+
|
| 94 |
+
# Prune conv1d layers
|
| 95 |
+
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
| 96 |
+
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
| 97 |
+
|
| 98 |
+
# Update hyper params
|
| 99 |
+
self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
|
| 100 |
+
self.num_heads = self.num_heads - len(heads)
|
| 101 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
| 102 |
+
|
| 103 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
| 104 |
+
# query: (b, num_heads * sq, head_dim)
|
| 105 |
+
# key: (b, head_dim, sk)
|
| 106 |
+
# value: (b, sk, head_dim)
|
| 107 |
+
batch_size = query.size(0)
|
| 108 |
+
query_length = query.size(1) // self.num_heads
|
| 109 |
+
key_length = key.size(2)
|
| 110 |
+
# (b, num_heads * sq, head_dim) x (b, head_dim, sk) -> (b, num_heads * sq, sk)
|
| 111 |
+
attn_weights = torch.bmm(query, key)
|
| 112 |
+
# -> (b, num_heads, sq, sk)
|
| 113 |
+
attn_weights = attn_weights.view(batch_size, self.num_heads, query_length, key_length)
|
| 114 |
+
|
| 115 |
+
if self.scale_attn_weights:
|
| 116 |
+
attn_weights = attn_weights / torch.tensor(
|
| 117 |
+
value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# Layer-wise attention scaling
|
| 121 |
+
if self.scale_attn_by_inverse_layer_idx:
|
| 122 |
+
attn_weights = attn_weights / float(self.layer_idx + 1)
|
| 123 |
+
|
| 124 |
+
if not self.is_cross_attention:
|
| 125 |
+
# if only "normal" attention layer implements causal mask
|
| 126 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].to(torch.bool)
|
| 127 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
| 128 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
| 129 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
| 130 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
| 131 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
| 132 |
+
|
| 133 |
+
if attention_mask is not None:
|
| 134 |
+
# Apply the attention mask
|
| 135 |
+
attn_weights = attn_weights + attention_mask
|
| 136 |
+
|
| 137 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
| 138 |
+
|
| 139 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
|
| 140 |
+
attn_weights = attn_weights.type(value.dtype)
|
| 141 |
+
attn_weights = self.attn_dropout(attn_weights)
|
| 142 |
+
|
| 143 |
+
# Mask heads if we want to
|
| 144 |
+
if head_mask is not None:
|
| 145 |
+
attn_weights = attn_weights * head_mask
|
| 146 |
+
|
| 147 |
+
# (b, num_heads, sq, sk) -> (b, num_heads * sq, sk)
|
| 148 |
+
_attn_weights = attn_weights.view(batch_size, self.num_heads * query_length, key_length)
|
| 149 |
+
# (b, num_heads * sq, sk) x (b, sk, head_dim) -> (b, num_heads * sq, head_dim)
|
| 150 |
+
attn_output = torch.bmm(_attn_weights, value)
|
| 151 |
+
attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
|
| 152 |
+
|
| 153 |
+
return attn_output, attn_weights
|
| 154 |
+
|
| 155 |
+
def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
|
| 156 |
+
# Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
|
| 157 |
+
bsz, num_heads, q_seq_len, dk = query.size()
|
| 158 |
+
_, _, k_seq_len, _ = key.size()
|
| 159 |
+
|
| 160 |
+
# Preallocate attn_weights for `baddbmm`
|
| 161 |
+
attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
|
| 162 |
+
|
| 163 |
+
# Compute Scale Factor
|
| 164 |
+
scale_factor = 1.0
|
| 165 |
+
if self.scale_attn_weights:
|
| 166 |
+
scale_factor /= float(value.size(-1)) ** 0.5
|
| 167 |
+
|
| 168 |
+
if self.scale_attn_by_inverse_layer_idx:
|
| 169 |
+
scale_factor /= float(self.layer_idx + 1)
|
| 170 |
+
|
| 171 |
+
# Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
|
| 172 |
+
with autocast(enabled=False):
|
| 173 |
+
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
|
| 174 |
+
attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
|
| 175 |
+
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
| 176 |
+
|
| 177 |
+
if not self.is_cross_attention:
|
| 178 |
+
# if only "normal" attention layer implements causal mask
|
| 179 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
| 180 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].bool()
|
| 181 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
| 182 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
| 183 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
| 184 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
| 185 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
| 186 |
+
|
| 187 |
+
if attention_mask is not None:
|
| 188 |
+
# Apply the attention mask
|
| 189 |
+
attn_weights = attn_weights + attention_mask
|
| 190 |
+
|
| 191 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
| 192 |
+
|
| 193 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
|
| 194 |
+
if attn_weights.dtype != torch.float32:
|
| 195 |
+
raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
|
| 196 |
+
attn_weights = attn_weights.type(value.dtype)
|
| 197 |
+
attn_weights = self.attn_dropout(attn_weights)
|
| 198 |
+
|
| 199 |
+
# Mask heads if we want to
|
| 200 |
+
if head_mask is not None:
|
| 201 |
+
attn_weights = attn_weights * head_mask
|
| 202 |
+
|
| 203 |
+
attn_output = torch.matmul(attn_weights, value)
|
| 204 |
+
|
| 205 |
+
return attn_output, attn_weights
|
| 206 |
+
|
| 207 |
+
def _split_heads(self, tensor, num_heads, attn_head_size):
|
| 208 |
+
"""
|
| 209 |
+
Splits hidden_size dim into attn_head_size and num_heads
|
| 210 |
+
"""
|
| 211 |
+
new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
|
| 212 |
+
tensor = tensor.view(new_shape)
|
| 213 |
+
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
| 214 |
+
|
| 215 |
+
def _merge_heads(self, tensor, num_heads, attn_head_size):
|
| 216 |
+
"""
|
| 217 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden_size
|
| 218 |
+
"""
|
| 219 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
| 220 |
+
new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
|
| 221 |
+
return tensor.view(new_shape)
|
| 222 |
+
|
| 223 |
+
def forward(
|
| 224 |
+
self,
|
| 225 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
| 226 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
| 227 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 228 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 229 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
| 230 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
| 231 |
+
use_cache: Optional[bool] = False,
|
| 232 |
+
output_attentions: Optional[bool] = False,
|
| 233 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
| 234 |
+
if encoder_hidden_states is not None:
|
| 235 |
+
raise NotImplementedError("Cross-attention not implemented for MQA")
|
| 236 |
+
if not hasattr(self, "q_attn"):
|
| 237 |
+
raise ValueError(
|
| 238 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
| 239 |
+
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
query = self.q_attn(hidden_states)
|
| 243 |
+
key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
| 244 |
+
attention_mask = encoder_attention_mask
|
| 245 |
+
else:
|
| 246 |
+
query = self.q_attn(hidden_states)
|
| 247 |
+
key, value = self.kv_attn(hidden_states).split(self.head_dim, dim=2)
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
batch_size, seq_length = query.shape[:2]
|
| 251 |
+
# (query_length, batch, num_heads, head_dim)
|
| 252 |
+
# (batch, num_heads * query_length, head_dim)\
|
| 253 |
+
|
| 254 |
+
# (batch, query_length, hidden_size) -> (batch, num_heads, query_length, head_dim)
|
| 255 |
+
query = query.view(batch_size, seq_length, self.num_heads, self.head_dim).permute([0, 2, 1, 3])
|
| 256 |
+
# -> (batch, num_heads * query_length, head_dim)
|
| 257 |
+
query = query.reshape(batch_size, self.num_heads * seq_length, self.head_dim)
|
| 258 |
+
|
| 259 |
+
# (batch, query_length, hidden_size) -> (batch, query_length * num_heads, head_dim)
|
| 260 |
+
# query = query.view(
|
| 261 |
+
# batch_size, seq_length, self.num_heads, self.head_dim,
|
| 262 |
+
# ).reshape(
|
| 263 |
+
# batch_size, seq_length * self.num_heads, self.head_dim
|
| 264 |
+
# )
|
| 265 |
+
key = key.permute(0, 2, 1) # (batch_size, head_dim, seq_length)
|
| 266 |
+
# value (batch_size, seq_length, head_dim)
|
| 267 |
+
|
| 268 |
+
if layer_past is not None:
|
| 269 |
+
past_key, past_value = layer_past
|
| 270 |
+
# Concatenate on sequence dimension
|
| 271 |
+
key = torch.cat((past_key, key), dim=-1)
|
| 272 |
+
value = torch.cat((past_value, value), dim=-2)
|
| 273 |
+
|
| 274 |
+
if use_cache is True:
|
| 275 |
+
present = (key, value)
|
| 276 |
+
else:
|
| 277 |
+
present = None
|
| 278 |
+
|
| 279 |
+
if self.reorder_and_upcast_attn:
|
| 280 |
+
raise NotImplementedError("Reorder and upcast attention not implemented for MQA")
|
| 281 |
+
attn_output, attn_weights = self._upcast_and_reordered_attn(query, key, value, attention_mask, head_mask)
|
| 282 |
+
else:
|
| 283 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
| 284 |
+
|
| 285 |
+
attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
|
| 286 |
+
attn_output = self.c_proj(attn_output)
|
| 287 |
+
attn_output = self.resid_dropout(attn_output)
|
| 288 |
+
|
| 289 |
+
outputs = (attn_output, present)
|
| 290 |
+
if output_attentions:
|
| 291 |
+
outputs += (attn_weights,)
|
| 292 |
+
|
| 293 |
+
return outputs # a, present, (attentions)
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
# inherit from gpt_modeling.py, and override `attn` module
|
| 297 |
+
class GPT2CustomBlock(GPT2Block):
|
| 298 |
+
|
| 299 |
+
def __init__(self, config: GPT2CustomConfig, layer_idx=None):
|
| 300 |
+
super().__init__(config, layer_idx)
|
| 301 |
+
# Override attention module if using multiquery
|
| 302 |
+
if config.attention_head_type == MULTI_QUERY:
|
| 303 |
+
self.attn = GPT2MQAttention(config, layer_idx=layer_idx)
|
| 304 |
+
if config.add_cross_attention:
|
| 305 |
+
raise NotImplementedError("Cross-attention not implemented for MQA")
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
# inherit from gpt_modeling.py and override `__init__` method
|
| 309 |
+
class GPT2CustomModel(GPT2Model):
|
| 310 |
+
config_class = GPT2CustomConfig
|
| 311 |
+
|
| 312 |
+
def __init__(self, config):
|
| 313 |
+
GPT2PreTrainedModel.__init__(self, config)
|
| 314 |
+
|
| 315 |
+
self.embed_dim = config.hidden_size
|
| 316 |
+
|
| 317 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
| 318 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
| 319 |
+
|
| 320 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
| 321 |
+
self.h = nn.ModuleList([GPT2CustomBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
| 322 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
| 323 |
+
|
| 324 |
+
# Model parallel
|
| 325 |
+
self.model_parallel = False
|
| 326 |
+
self.device_map = None
|
| 327 |
+
self.gradient_checkpointing = False
|
| 328 |
+
|
| 329 |
+
# Initialize weights and apply final processing
|
| 330 |
+
self.post_init()
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
class GPT2LMHeadCustomModel(GPT2LMHeadModel):
|
| 334 |
+
config_class = GPT2CustomConfig
|
| 335 |
+
|
| 336 |
+
def __init__(self, config):
|
| 337 |
+
GPT2PreTrainedModel.__init__(self, config)
|
| 338 |
+
self.transformer = GPT2CustomModel(config)
|
| 339 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 340 |
+
|
| 341 |
+
# Model parallel
|
| 342 |
+
self.model_parallel = False
|
| 343 |
+
self.device_map = None
|
| 344 |
+
|
| 345 |
+
# Initialize weights and apply final processing
|
| 346 |
+
self.post_init()
|