File size: 2,388 Bytes
5b9ff89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: openrail
tags:
- generated_from_trainer
model-index:
- name: santacoder-finetuned-the-stack-rust
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# santacoder-finetuned-the-stack-rust
This model is a fine-tuned version of [bigcode/santacoder](https://huggingface.co/bigcode/santacoder) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7999
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 1.2075 | 0.05 | 500 | 1.0610 |
| 1.79 | 0.1 | 1000 | 1.0754 |
| 1.2441 | 0.15 | 1500 | 1.0339 |
| 1.1709 | 0.2 | 2000 | 0.9829 |
| 0.7645 | 0.25 | 2500 | 0.9738 |
| 1.0381 | 0.3 | 3000 | 0.9536 |
| 1.0625 | 0.35 | 3500 | 0.9268 |
| 0.78 | 0.4 | 4000 | 0.9130 |
| 0.9294 | 0.45 | 4500 | 0.9001 |
| 0.9767 | 0.5 | 5000 | 0.8857 |
| 5.7027 | 0.55 | 5500 | 0.8728 |
| 0.9476 | 0.6 | 6000 | 0.8556 |
| 0.6185 | 0.65 | 6500 | 0.8404 |
| 0.5057 | 0.7 | 7000 | 0.8328 |
| 0.6451 | 0.75 | 7500 | 0.8199 |
| 0.8298 | 0.8 | 8000 | 0.8111 |
| 0.2447 | 0.85 | 8500 | 0.8069 |
| 0.8177 | 0.9 | 9000 | 0.8020 |
| 0.7184 | 0.95 | 9500 | 0.8003 |
| 0.9166 | 1.0 | 10000 | 0.7999 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2
|