File size: 4,159 Bytes
0cef8a9 94d075b 0cef8a9 c9690c7 0cef8a9 c9690c7 0cef8a9 c9690c7 976d61d c9690c7 976d61d c9690c7 976d61d c9690c7 976d61d c9690c7 976d61d c9690c7 976d61d c9690c7 976d61d c9690c7 976d61d c9690c7 976d61d c9690c7 976d61d c9690c7 976d61d c9690c7 976d61d c9690c7 976d61d c9690c7 0cef8a9 94d075b 0cef8a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
language:
- en
license: mit
tags:
- generated_from_trainer
- deberta-v3
datasets:
- glue
metrics:
- accuracy
model-index:
- name: deberta-v3-small
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: GLUE SST2
type: glue
args: sst2
metrics:
- type: accuracy
value: 0.9403669724770642
name: Accuracy
- task:
type: text-classification
name: Text Classification
dataset:
name: glue
type: glue
config: sst2
split: validation
metrics:
- type: accuracy
value: 0.9403669724770642
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2MyOTE4ZTk0YzUyNGFkMGVjNTk4MDBlZGRlZjgzOGIzYWY0YjExMmZmMDZkYjFmOTlkYmM2ZDEwYjMxM2JkOCIsInZlcnNpb24iOjF9.Ks2vdjAFUe0isZp4F-OFK9HzvPqeU3mJEG_XJfOvkTdm9DyaefT9x78sof8i_EbIync5Ao7NOC4STCTQIUvgBw
- type: precision
value: 0.9375
name: Precision
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzNiZTEwNGNlZWUwZjMxYmRjNWU0ZGQ1Njg1M2MwNTQ3YWEwN2JlNDk4OWQ4MzNkMmNhOGUwMzA0YWU3ZWZjMiIsInZlcnNpb24iOjF9.p5Gbs680U45zHoWH9YgRLmOxINR4emvc2yNe9Kt3-y_WyyCd6CAAK9ht-IyGJ7GSO5WQny-ISngJFtyFt5NqDQ
- type: recall
value: 0.9459459459459459
name: Recall
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjk2MmJjMDZlZDUzM2QzMWZhMzMxNWRkYjJlYzA3MjUwMThiYWMwNmQzODE1MTMxNTdkNWVmMDhhNzJjMjg3MyIsInZlcnNpb24iOjF9.Jeu6tyhXQxMykqqFH0V-IXvyTrxAsgnYByYCOJgfj86957G5LiGdfQzDtTuGkt0XcoenXhPuueT8m5tsuJyLBA
- type: auc
value: 0.9804217184474193
name: AUC
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2Q5MWU1MGMzMjEwNzY4MDkzN2Q5ZjM5MTQ2MDc5YTRkZTNmNTk2YTdhODI1ZGJlOTlkNTQ2M2Q4YTUxN2Y3OSIsInZlcnNpb24iOjF9.INkDvQhg2jfD7WEE4qHJazPYo10O4Ffc5AZz5vI8fmN01rK3sXzzydvmrmTMzYSSmLhn9sc1-ZkoWbcv81oqBA
- type: f1
value: 0.9417040358744394
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWRhNjljZjk0NjY1ZjU1ZjU2ZmM5ODk1YTVkMTI0ZGY4MjI1OTFlZWJkZWMyMGYxY2I1MzRjODBkNGVlMzJkZSIsInZlcnNpb24iOjF9.kQ547NVFUxeE4vNiGzGsCvMxR1MCJTChX44ds27qQ4Rj2m1UuD2C9TLTuiu8KMvq1mH1io978dJEpOCHYq6KCQ
- type: loss
value: 0.21338027715682983
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2YyYmVhNzgxMzMyNjJiNzZkYjE1YWM5Y2ZmMTlkNjQ5MThhYjIxNTE5MmE3Y2E0ODllODMyYjAzYWI3ZWRlMSIsInZlcnNpb24iOjF9.ad9rLnOeJZbRi_QQKEBpNNBp_Bt5SHf39ZeWQOZxp7tAK9dc0OK8XOqtihoXcAWDahwuoGiiYtcFNtvueaX6DA
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DeBERTa v3 (small) fine-tuned on SST2
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the GLUE SST2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2134
- Accuracy: 0.9404
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.176 | 1.0 | 4210 | 0.2134 | 0.9404 |
| 0.1254 | 2.0 | 8420 | 0.2362 | 0.9415 |
| 0.0957 | 3.0 | 12630 | 0.3187 | 0.9335 |
| 0.0673 | 4.0 | 16840 | 0.3039 | 0.9266 |
| 0.0457 | 5.0 | 21050 | 0.3521 | 0.9312 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3
|