File size: 1,902 Bytes
0992775 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
---
language: en
thumbnail:
---
# [BERT](https://huggingface.co/deepset/bert-base-cased-squad2) fine tuned on [QNLI](https://github.com/rhythmcao/QNLI)+ compression ([BERT-of-Theseus](https://github.com/JetRunner/BERT-of-Theseus))
I used a [Bert model fine tuned on **SQUAD v2**](https://huggingface.co/deepset/bert-base-cased-squad2) and then I fine tuned it on **QNLI** using **compression** (with a constant replacing rate) as proposed in **BERT-of-Theseus**
## Details of the downstream task (QNLI):
### Getting the dataset
```bash
wget https://raw.githubusercontent.com/rhythmcao/QNLI/master/data/QNLI/train.tsv
wget https://raw.githubusercontent.com/rhythmcao/QNLI/master/data/QNLI/test.tsv
wget https://raw.githubusercontent.com/rhythmcao/QNLI/master/data/QNLI/dev.tsv
mkdir QNLI_dataset
mv *.tsv QNLI_dataset
```
### Model training
The model was trained on a Tesla P100 GPU and 25GB of RAM with the following command:
```bash
!python /content/BERT-of-Theseus/run_glue.py \
--model_name_or_path deepset/bert-base-cased-squad2 \
--task_name qnli \
--do_train \
--do_eval \
--do_lower_case \
--data_dir /content/QNLI_dataset \
--max_seq_length 128 \
--per_gpu_train_batch_size 32 \
--per_gpu_eval_batch_size 32 \
--learning_rate 2e-5 \
--save_steps 2000 \
--num_train_epochs 50 \
--output_dir /content/ouput_dir \
--evaluate_during_training \
--replacing_rate 0.7 \
--steps_for_replacing 2500
```
## Metrics:
| Model | Accuracy |
|-----------------|------|
| BERT-base | 91.2 |
| BERT-of-Theseus | 88.8 |
| [bert-uncased-finetuned-qnli](https://huggingface.co/mrm8488/bert-uncased-finetuned-qnli) | 87.2
| DistillBERT | 85.3 |
> [See all my models](https://huggingface.co/models?search=mrm8488)
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488)
> Made with <span style="color: #e25555;">♥</span> in Spain
|