--- library_name: transformers tags: - axolotl - generated_from_trainer datasets: - ChaoticNeutrals/Luminous_Opus - ChaoticNeutrals/Synthetic-Dark-RP - ChaoticNeutrals/Synthetic-RP model-index: - name: Tiny-Darkllama3.2-1B-Instruct results: [] base_model: - unsloth/Llama-3.2-1B --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: unsloth/Llama-3.2-1B bf16: false dataset_prepared_path: last_run_prepared datasets: - chat_template: alpaca field_messages: conversations message_field_content: value message_field_role: from path: ChaoticNeutrals/Luminous_Opus split: train type: chat_template debug: null deepspeed: null early_stopping_patience: null evals_per_epoch: null flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true group_by_length: false hub_model_id: mrcuddle/Tiny-Darkllama3.2-1B-Instruct is_llama_derived_model: true learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lr_scheduler: linear max_steps: 20 micro_batch_size: 1 mlflow_experiment_name: colab-example model_type: LlamaForCausalLM num_epochs: 4 optimizer: adamw_torch output_dir: ./llama2 pad_to_sequence_len: true resume_from_checkpoint: null sample_packing: true saves_per_epoch: null sequence_len: 1096 special_tokens: null strict: false tf32: false tokenizer_type: LlamaTokenizer train_on_inputs: false wandb_entity: null wandb_log_model: null wandb_name: null wandb_project: null wandb_watch: null warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# Tiny-Darkllama3.2-1B-Instruct This model was trained from unsloth/Llama-3.2-1B on the ChaoticNeutrals/Luminous_Opus, Synthetic-Dark-RP, Synthetic-RP datasets. ## Training and evaluation data ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 20 ### Training results [2025-02-11 13:09:27,300] [INFO] [axolotl.train.train:173] [PID:7240] [RANK:0] Starting trainer... [2025-02-11 13:09:27,706] [INFO] [axolotl.utils.samplers.multipack.calc_min_len:203] [PID:7240] [RANK:0] gather_len_batches: [35] [2025-02-11 13:09:27,761] [INFO] [axolotl.callbacks.on_train_begin:39] [PID:7240] [RANK:0] The Axolotl config has been saved to the MLflow artifacts. {'loss': 3.4922, 'grad_norm': 9.877531051635742, 'learning_rate': 2e-05, 'epoch': 0.03} 5% 1/20 [00:02<00:37, 1.98s/it][2025-02-11 13:09:31,221] [INFO] [axolotl.callbacks.on_step_end:127] [PID:7240] [RANK:0] cuda memory usage while training: 12.320GB (+8.604GB cache, +0.565GB misc) {'loss': 3.3057, 'grad_norm': 11.661816596984863, 'learning_rate': 4e-05, 'epoch': 0.06} {'loss': 2.4733, 'grad_norm': 8.751928329467773, 'learning_rate': 6e-05, 'epoch': 0.09} {'loss': 2.9842, 'grad_norm': 10.503549575805664, 'learning_rate': 8e-05, 'epoch': 0.11} {'loss': 2.6624, 'grad_norm': 12.645892143249512, 'learning_rate': 0.0001, 'epoch': 0.14} {'loss': 2.7616, 'grad_norm': 10.691230773925781, 'learning_rate': 0.00012, 'epoch': 0.17} {'loss': 2.9891, 'grad_norm': 10.076760292053223, 'learning_rate': 0.00014, 'epoch': 0.2} {'loss': 2.3745, 'grad_norm': 10.034379959106445, 'learning_rate': 0.00016, 'epoch': 0.23} {'loss': 2.4965, 'grad_norm': 9.778562545776367, 'learning_rate': 0.00018, 'epoch': 0.26} {'loss': 2.3811, 'grad_norm': 19.146963119506836, 'learning_rate': 0.0002, 'epoch': 0.29} {'loss': 3.3611, 'grad_norm': 14.556534767150879, 'learning_rate': 0.00018, 'epoch': 0.31} {'loss': 2.9619, 'grad_norm': 16.88424301147461, 'learning_rate': 0.00016, 'epoch': 0.34} {'loss': 2.121, 'grad_norm': 9.94941520690918, 'learning_rate': 0.00014, 'epoch': 0.37} {'loss': 2.1042, 'grad_norm': 23.178285598754883, 'learning_rate': 0.00012, 'epoch': 0.4} {'loss': 2.4722, 'grad_norm': 10.403461456298828, 'learning_rate': 0.0001, 'epoch': 0.43} {'loss': 2.7434, 'grad_norm': 11.339975357055664, 'learning_rate': 8e-05, 'epoch': 0.46} {'loss': 2.2349, 'grad_norm': 202.98793029785156, 'learning_rate': 6e-05, 'epoch': 0.49} {'loss': 2.3479, 'grad_norm': 10.250885009765625, 'learning_rate': 4e-05, 'epoch': 0.51} {'loss': 2.4169, 'grad_norm': 14.021651268005371, 'learning_rate': 2e-05, 'epoch': 0.54} {'loss': 3.4686, 'grad_norm': 10.988056182861328, 'learning_rate': 0.0, 'epoch': 0.57} {'train_runtime': 172.0118, 'train_samples_per_second': 0.116, 'train_steps_per_second': 0.116, 'train_loss': 2.707640600204468, 'epoch': 0.57} 100% 20/20 [02:52<00:00, 8.65s/it] ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0