File size: 5,301 Bytes
6868439
 
 
1414fd2
6868439
 
1414fd2
e05278d
 
6868439
1414fd2
6868439
e05278d
 
6868439
 
 
 
 
 
 
 
 
 
e05278d
6868439
 
 
 
 
 
 
1414fd2
6868439
 
 
 
 
 
 
 
 
 
 
 
 
1414fd2
6868439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1414fd2
6868439
8543d8f
6868439
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8543d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6868439
 
 
 
 
 
 
e05278d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
library_name: transformers
tags:
- axolotl
- generated_from_trainer
datasets:
- ChaoticNeutrals/Luminous_Opus
- ChaoticNeutrals/Synthetic-Dark-RP
- ChaoticNeutrals/Synthetic-RP
model-index:
- name: Tiny-Darkllama3.2-1B-Instruct
  results: []
base_model:
- unsloth/Llama-3.2-1B
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.6.0`
```yaml
base_model: unsloth/Llama-3.2-1B
bf16: false
dataset_prepared_path: last_run_prepared
datasets:
- chat_template: alpaca
  field_messages: conversations
  message_field_content: value
  message_field_role: from
  path: ChaoticNeutrals/Luminous_Opus
  split: train
  type: chat_template
debug: null
deepspeed: null
early_stopping_patience: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: false
hub_model_id: mrcuddle/Tiny-Darkllama3.2-1B-Instruct
is_llama_derived_model: true
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lr_scheduler: linear
max_steps: 20
micro_batch_size: 1
mlflow_experiment_name: colab-example
model_type: LlamaForCausalLM
num_epochs: 4
optimizer: adamw_torch
output_dir: ./llama2
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: null
sequence_len: 1096
special_tokens: null
strict: false
tf32: false
tokenizer_type: LlamaTokenizer
train_on_inputs: false
wandb_entity: null
wandb_log_model: null
wandb_name: null
wandb_project: null
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

```

</details><br>

# Tiny-Darkllama3.2-1B-Instruct

This model was trained from unsloth/Llama-3.2-1B on the ChaoticNeutrals/Luminous_Opus, Synthetic-Dark-RP, Synthetic-RP datasets.




## Training and evaluation data

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 20

### Training results
[2025-02-11 13:09:27,300] [INFO] [axolotl.train.train:173] [PID:7240] [RANK:0] Starting trainer...
[2025-02-11 13:09:27,706] [INFO] [axolotl.utils.samplers.multipack.calc_min_len:203] [PID:7240] [RANK:0] gather_len_batches: [35]
[2025-02-11 13:09:27,761] [INFO] [axolotl.callbacks.on_train_begin:39] [PID:7240] [RANK:0] The Axolotl config has been saved to the MLflow artifacts.
{'loss': 3.4922, 'grad_norm': 9.877531051635742, 'learning_rate': 2e-05, 'epoch': 0.03}
  5% 1/20 [00:02<00:37,  1.98s/it][2025-02-11 13:09:31,221] [INFO] [axolotl.callbacks.on_step_end:127] [PID:7240] [RANK:0] cuda memory usage while training: 12.320GB (+8.604GB cache, +0.565GB misc)
{'loss': 3.3057, 'grad_norm': 11.661816596984863, 'learning_rate': 4e-05, 'epoch': 0.06}
{'loss': 2.4733, 'grad_norm': 8.751928329467773, 'learning_rate': 6e-05, 'epoch': 0.09}
{'loss': 2.9842, 'grad_norm': 10.503549575805664, 'learning_rate': 8e-05, 'epoch': 0.11}
{'loss': 2.6624, 'grad_norm': 12.645892143249512, 'learning_rate': 0.0001, 'epoch': 0.14}
{'loss': 2.7616, 'grad_norm': 10.691230773925781, 'learning_rate': 0.00012, 'epoch': 0.17}
{'loss': 2.9891, 'grad_norm': 10.076760292053223, 'learning_rate': 0.00014, 'epoch': 0.2}
{'loss': 2.3745, 'grad_norm': 10.034379959106445, 'learning_rate': 0.00016, 'epoch': 0.23}
{'loss': 2.4965, 'grad_norm': 9.778562545776367, 'learning_rate': 0.00018, 'epoch': 0.26}
{'loss': 2.3811, 'grad_norm': 19.146963119506836, 'learning_rate': 0.0002, 'epoch': 0.29}
{'loss': 3.3611, 'grad_norm': 14.556534767150879, 'learning_rate': 0.00018, 'epoch': 0.31}
{'loss': 2.9619, 'grad_norm': 16.88424301147461, 'learning_rate': 0.00016, 'epoch': 0.34}
{'loss': 2.121, 'grad_norm': 9.94941520690918, 'learning_rate': 0.00014, 'epoch': 0.37}
{'loss': 2.1042, 'grad_norm': 23.178285598754883, 'learning_rate': 0.00012, 'epoch': 0.4}
{'loss': 2.4722, 'grad_norm': 10.403461456298828, 'learning_rate': 0.0001, 'epoch': 0.43}
{'loss': 2.7434, 'grad_norm': 11.339975357055664, 'learning_rate': 8e-05, 'epoch': 0.46}
{'loss': 2.2349, 'grad_norm': 202.98793029785156, 'learning_rate': 6e-05, 'epoch': 0.49}
{'loss': 2.3479, 'grad_norm': 10.250885009765625, 'learning_rate': 4e-05, 'epoch': 0.51}
{'loss': 2.4169, 'grad_norm': 14.021651268005371, 'learning_rate': 2e-05, 'epoch': 0.54}
{'loss': 3.4686, 'grad_norm': 10.988056182861328, 'learning_rate': 0.0, 'epoch': 0.57}
{'train_runtime': 172.0118, 'train_samples_per_second': 0.116, 'train_steps_per_second': 0.116, 'train_loss': 2.707640600204468, 'epoch': 0.57}
100% 20/20 [02:52<00:00,  8.65s/it]


### Framework versions

- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0