File size: 5,301 Bytes
6868439 1414fd2 6868439 1414fd2 e05278d 6868439 1414fd2 6868439 e05278d 6868439 e05278d 6868439 1414fd2 6868439 1414fd2 6868439 1414fd2 6868439 8543d8f 6868439 8543d8f 6868439 e05278d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
---
library_name: transformers
tags:
- axolotl
- generated_from_trainer
datasets:
- ChaoticNeutrals/Luminous_Opus
- ChaoticNeutrals/Synthetic-Dark-RP
- ChaoticNeutrals/Synthetic-RP
model-index:
- name: Tiny-Darkllama3.2-1B-Instruct
results: []
base_model:
- unsloth/Llama-3.2-1B
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.6.0`
```yaml
base_model: unsloth/Llama-3.2-1B
bf16: false
dataset_prepared_path: last_run_prepared
datasets:
- chat_template: alpaca
field_messages: conversations
message_field_content: value
message_field_role: from
path: ChaoticNeutrals/Luminous_Opus
split: train
type: chat_template
debug: null
deepspeed: null
early_stopping_patience: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
group_by_length: false
hub_model_id: mrcuddle/Tiny-Darkllama3.2-1B-Instruct
is_llama_derived_model: true
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lr_scheduler: linear
max_steps: 20
micro_batch_size: 1
mlflow_experiment_name: colab-example
model_type: LlamaForCausalLM
num_epochs: 4
optimizer: adamw_torch
output_dir: ./llama2
pad_to_sequence_len: true
resume_from_checkpoint: null
sample_packing: true
saves_per_epoch: null
sequence_len: 1096
special_tokens: null
strict: false
tf32: false
tokenizer_type: LlamaTokenizer
train_on_inputs: false
wandb_entity: null
wandb_log_model: null
wandb_name: null
wandb_project: null
wandb_watch: null
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
```
</details><br>
# Tiny-Darkllama3.2-1B-Instruct
This model was trained from unsloth/Llama-3.2-1B on the ChaoticNeutrals/Luminous_Opus, Synthetic-Dark-RP, Synthetic-RP datasets.
## Training and evaluation data
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- training_steps: 20
### Training results
[2025-02-11 13:09:27,300] [INFO] [axolotl.train.train:173] [PID:7240] [RANK:0] Starting trainer...
[2025-02-11 13:09:27,706] [INFO] [axolotl.utils.samplers.multipack.calc_min_len:203] [PID:7240] [RANK:0] gather_len_batches: [35]
[2025-02-11 13:09:27,761] [INFO] [axolotl.callbacks.on_train_begin:39] [PID:7240] [RANK:0] The Axolotl config has been saved to the MLflow artifacts.
{'loss': 3.4922, 'grad_norm': 9.877531051635742, 'learning_rate': 2e-05, 'epoch': 0.03}
5% 1/20 [00:02<00:37, 1.98s/it][2025-02-11 13:09:31,221] [INFO] [axolotl.callbacks.on_step_end:127] [PID:7240] [RANK:0] cuda memory usage while training: 12.320GB (+8.604GB cache, +0.565GB misc)
{'loss': 3.3057, 'grad_norm': 11.661816596984863, 'learning_rate': 4e-05, 'epoch': 0.06}
{'loss': 2.4733, 'grad_norm': 8.751928329467773, 'learning_rate': 6e-05, 'epoch': 0.09}
{'loss': 2.9842, 'grad_norm': 10.503549575805664, 'learning_rate': 8e-05, 'epoch': 0.11}
{'loss': 2.6624, 'grad_norm': 12.645892143249512, 'learning_rate': 0.0001, 'epoch': 0.14}
{'loss': 2.7616, 'grad_norm': 10.691230773925781, 'learning_rate': 0.00012, 'epoch': 0.17}
{'loss': 2.9891, 'grad_norm': 10.076760292053223, 'learning_rate': 0.00014, 'epoch': 0.2}
{'loss': 2.3745, 'grad_norm': 10.034379959106445, 'learning_rate': 0.00016, 'epoch': 0.23}
{'loss': 2.4965, 'grad_norm': 9.778562545776367, 'learning_rate': 0.00018, 'epoch': 0.26}
{'loss': 2.3811, 'grad_norm': 19.146963119506836, 'learning_rate': 0.0002, 'epoch': 0.29}
{'loss': 3.3611, 'grad_norm': 14.556534767150879, 'learning_rate': 0.00018, 'epoch': 0.31}
{'loss': 2.9619, 'grad_norm': 16.88424301147461, 'learning_rate': 0.00016, 'epoch': 0.34}
{'loss': 2.121, 'grad_norm': 9.94941520690918, 'learning_rate': 0.00014, 'epoch': 0.37}
{'loss': 2.1042, 'grad_norm': 23.178285598754883, 'learning_rate': 0.00012, 'epoch': 0.4}
{'loss': 2.4722, 'grad_norm': 10.403461456298828, 'learning_rate': 0.0001, 'epoch': 0.43}
{'loss': 2.7434, 'grad_norm': 11.339975357055664, 'learning_rate': 8e-05, 'epoch': 0.46}
{'loss': 2.2349, 'grad_norm': 202.98793029785156, 'learning_rate': 6e-05, 'epoch': 0.49}
{'loss': 2.3479, 'grad_norm': 10.250885009765625, 'learning_rate': 4e-05, 'epoch': 0.51}
{'loss': 2.4169, 'grad_norm': 14.021651268005371, 'learning_rate': 2e-05, 'epoch': 0.54}
{'loss': 3.4686, 'grad_norm': 10.988056182861328, 'learning_rate': 0.0, 'epoch': 0.57}
{'train_runtime': 172.0118, 'train_samples_per_second': 0.116, 'train_steps_per_second': 0.116, 'train_loss': 2.707640600204468, 'epoch': 0.57}
100% 20/20 [02:52<00:00, 8.65s/it]
### Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0 |