mradermacher commited on
Commit
a95f658
·
verified ·
1 Parent(s): eba1a35

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md CHANGED
@@ -1,6 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: -->
6
  static quants of https://huggingface.co/fluently-lm/Llama-TI-8B
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: fluently-lm/Llama-TI-8B
3
+ language:
4
+ - en
5
+ - code
6
+ library_name: transformers
7
+ license: apache-2.0
8
+ quantized_by: mradermacher
9
+ tags:
10
+ - llama
11
+ - llama3
12
+ - llama-ti
13
+ - fluently-lm
14
+ - fluently-merge
15
+ - base
16
+ - reflection
17
+ - reasoning
18
+ - math
19
+ - writing
20
+ ---
21
+ ## About
22
+
23
  <!-- ### quantize_version: 2 -->
24
  <!-- ### output_tensor_quantised: 1 -->
25
  <!-- ### convert_type: hf -->
26
  <!-- ### vocab_type: -->
27
  <!-- ### tags: -->
28
  static quants of https://huggingface.co/fluently-lm/Llama-TI-8B
29
+
30
+ <!-- provided-files -->
31
+ weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama-TI-8B-i1-GGUF
32
+ ## Usage
33
+
34
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
35
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
36
+ more details, including on how to concatenate multi-part files.
37
+
38
+ ## Provided Quants
39
+
40
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
41
+
42
+ | Link | Type | Size/GB | Notes |
43
+ |:-----|:-----|--------:|:------|
44
+ | [GGUF](https://huggingface.co/mradermacher/Llama-TI-8B-GGUF/resolve/main/Llama-TI-8B.Q2_K.gguf) | Q2_K | 3.3 | |
45
+ | [GGUF](https://huggingface.co/mradermacher/Llama-TI-8B-GGUF/resolve/main/Llama-TI-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
46
+ | [GGUF](https://huggingface.co/mradermacher/Llama-TI-8B-GGUF/resolve/main/Llama-TI-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
47
+ | [GGUF](https://huggingface.co/mradermacher/Llama-TI-8B-GGUF/resolve/main/Llama-TI-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
48
+ | [GGUF](https://huggingface.co/mradermacher/Llama-TI-8B-GGUF/resolve/main/Llama-TI-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
49
+ | [GGUF](https://huggingface.co/mradermacher/Llama-TI-8B-GGUF/resolve/main/Llama-TI-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
50
+ | [GGUF](https://huggingface.co/mradermacher/Llama-TI-8B-GGUF/resolve/main/Llama-TI-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
51
+ | [GGUF](https://huggingface.co/mradermacher/Llama-TI-8B-GGUF/resolve/main/Llama-TI-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
52
+ | [GGUF](https://huggingface.co/mradermacher/Llama-TI-8B-GGUF/resolve/main/Llama-TI-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
53
+ | [GGUF](https://huggingface.co/mradermacher/Llama-TI-8B-GGUF/resolve/main/Llama-TI-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
54
+ | [GGUF](https://huggingface.co/mradermacher/Llama-TI-8B-GGUF/resolve/main/Llama-TI-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
55
+
56
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
57
+ types (lower is better):
58
+
59
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
60
+
61
+ And here are Artefact2's thoughts on the matter:
62
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
63
+
64
+ ## FAQ / Model Request
65
+
66
+ See https://huggingface.co/mradermacher/model_requests for some answers to
67
+ questions you might have and/or if you want some other model quantized.
68
+
69
+ ## Thanks
70
+
71
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
72
+ me use its servers and providing upgrades to my workstation to enable
73
+ this work in my free time.
74
+
75
+ <!-- end -->