--- base_model: argonne-private/AuroraGPT-IT-v4-0125 datasets: - open-phi/textbooks - open-phi/programming_books_llama - openchat/openchat_sharegpt4_dataset - nvidia/ChatQA-Training-Data - jeffmeloy/sonnet3.5_science_conversations - HuggingFaceH4/ultrachat_200k - microsoft/orca-math-word-problems-200k - m-a-p/CodeFeedback-Filtered-Instruction - teknium/OpenHermes-2.5 - openbmb/UltraInteract_sft language: - en library_name: transformers quantized_by: mradermacher tags: [] --- ## About static quants of https://huggingface.co/argonne-private/AuroraGPT-IT-v4-0125 weighted/imatrix quants are available at https://huggingface.co/mradermacher/AuroraGPT-IT-v4-0125-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/AuroraGPT-IT-v4-0125-GGUF/resolve/main/AuroraGPT-IT-v4-0125.Q2_K.gguf) | Q2_K | 2.3 | | | [GGUF](https://huggingface.co/mradermacher/AuroraGPT-IT-v4-0125-GGUF/resolve/main/AuroraGPT-IT-v4-0125.Q3_K_S.gguf) | Q3_K_S | 2.7 | | | [GGUF](https://huggingface.co/mradermacher/AuroraGPT-IT-v4-0125-GGUF/resolve/main/AuroraGPT-IT-v4-0125.Q3_K_M.gguf) | Q3_K_M | 3.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/AuroraGPT-IT-v4-0125-GGUF/resolve/main/AuroraGPT-IT-v4-0125.Q3_K_L.gguf) | Q3_K_L | 3.2 | | | [GGUF](https://huggingface.co/mradermacher/AuroraGPT-IT-v4-0125-GGUF/resolve/main/AuroraGPT-IT-v4-0125.IQ4_XS.gguf) | IQ4_XS | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/AuroraGPT-IT-v4-0125-GGUF/resolve/main/AuroraGPT-IT-v4-0125.Q4_K_S.gguf) | Q4_K_S | 3.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/AuroraGPT-IT-v4-0125-GGUF/resolve/main/AuroraGPT-IT-v4-0125.Q4_K_M.gguf) | Q4_K_M | 3.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/AuroraGPT-IT-v4-0125-GGUF/resolve/main/AuroraGPT-IT-v4-0125.Q5_K_S.gguf) | Q5_K_S | 4.2 | | | [GGUF](https://huggingface.co/mradermacher/AuroraGPT-IT-v4-0125-GGUF/resolve/main/AuroraGPT-IT-v4-0125.Q5_K_M.gguf) | Q5_K_M | 4.3 | | | [GGUF](https://huggingface.co/mradermacher/AuroraGPT-IT-v4-0125-GGUF/resolve/main/AuroraGPT-IT-v4-0125.Q6_K.gguf) | Q6_K | 5.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/AuroraGPT-IT-v4-0125-GGUF/resolve/main/AuroraGPT-IT-v4-0125.Q8_0.gguf) | Q8_0 | 6.4 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/AuroraGPT-IT-v4-0125-GGUF/resolve/main/AuroraGPT-IT-v4-0125.f16.gguf) | f16 | 12.0 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.