--- base_model: BSC-LT/ALIA-40b datasets: - oscar-corpus/colossal-oscar-1.0 - HuggingFaceFW/fineweb-edu - joelniklaus/eurlex_resources - joelniklaus/legal-mc4 - projecte-aina/CATalog - UFRGS/brwac - community-datasets/hrwac - danish-foundation-models/danish-gigaword - HiTZ/euscrawl - PleIAs/French-PD-Newspapers - PleIAs/French-PD-Books - AI-team-UoA/greek_legal_code - HiTZ/latxa-corpus-v1.1 - allenai/peS2o - pile-of-law/pile-of-law - PORTULAN/parlamento-pt - hoskinson-center/proof-pile - togethercomputer/RedPajama-Data-1T - bigcode/starcoderdata - bjoernp/tagesschau-2018-2023 - EleutherAI/the_pile_deduplicated language: - bg - ca - code - cs - cy - da - de - el - en - es - et - eu - fi - fr - ga - gl - hr - hu - it - lt - lv - mt - nl - nn - \no - oc - pl - pt - ro - ru - sh - sk - sl - sr - sv - uk library_name: transformers license: apache-2.0 quantized_by: mradermacher --- ## About weighted/imatrix quants of https://huggingface.co/BSC-LT/ALIA-40b static quants are available at https://huggingface.co/mradermacher/ALIA-40b-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-IQ1_S.gguf) | i1-IQ1_S | 9.8 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-IQ1_M.gguf) | i1-IQ1_M | 10.6 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 11.8 | | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 12.9 | | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-IQ2_S.gguf) | i1-IQ2_S | 13.7 | | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-IQ2_M.gguf) | i1-IQ2_M | 14.6 | | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-Q2_K_S.gguf) | i1-Q2_K_S | 14.8 | very low quality | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-Q2_K.gguf) | i1-Q2_K | 15.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 16.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 17.5 | | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 18.3 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-IQ3_S.gguf) | i1-IQ3_S | 18.4 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-IQ3_M.gguf) | i1-IQ3_M | 18.9 | | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 20.1 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 21.7 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 22.3 | | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-Q4_0.gguf) | i1-Q4_0 | 23.5 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 23.5 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 24.7 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-Q4_1.gguf) | i1-Q4_1 | 25.8 | | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 28.2 | | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 28.9 | | | [GGUF](https://huggingface.co/mradermacher/ALIA-40b-i1-GGUF/resolve/main/ALIA-40b.i1-Q6_K.gguf) | i1-Q6_K | 33.3 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.