update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- summarization
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- rouge
|
8 |
+
model-index:
|
9 |
+
- name: mt5-small-text-sum-1
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# mt5-small-text-sum-1
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 2.3715
|
21 |
+
- Rouge1: 20.75
|
22 |
+
- Rouge2: 6.54
|
23 |
+
- Rougel: 20.33
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 0.0001
|
43 |
+
- train_batch_size: 8
|
44 |
+
- eval_batch_size: 8
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 40
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel |
|
53 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|
|
54 |
+
| 4.936 | 1.29 | 500 | 2.6226 | 15.38 | 5.14 | 15.22 |
|
55 |
+
| 3.1573 | 2.58 | 1000 | 2.5081 | 18.02 | 5.53 | 17.8 |
|
56 |
+
| 2.9258 | 3.87 | 1500 | 2.4499 | 17.19 | 5.3 | 17.0 |
|
57 |
+
| 2.7786 | 5.15 | 2000 | 2.4264 | 18.17 | 5.02 | 17.99 |
|
58 |
+
| 2.6786 | 6.44 | 2500 | 2.4088 | 17.98 | 5.48 | 17.6 |
|
59 |
+
| 2.5824 | 7.73 | 3000 | 2.3909 | 19.43 | 6.32 | 19.07 |
|
60 |
+
| 2.5261 | 9.02 | 3500 | 2.3691 | 19.06 | 5.94 | 18.76 |
|
61 |
+
| 2.4372 | 10.31 | 4000 | 2.3580 | 19.76 | 6.37 | 19.49 |
|
62 |
+
| 2.3727 | 11.6 | 4500 | 2.3595 | 19.96 | 6.52 | 19.68 |
|
63 |
+
| 2.3488 | 12.89 | 5000 | 2.3580 | 19.63 | 6.14 | 19.31 |
|
64 |
+
| 2.2868 | 14.18 | 5500 | 2.3595 | 19.93 | 6.4 | 19.72 |
|
65 |
+
| 2.2268 | 15.46 | 6000 | 2.3632 | 19.95 | 6.13 | 19.55 |
|
66 |
+
| 2.2081 | 16.75 | 6500 | 2.3631 | 20.47 | 6.34 | 20.1 |
|
67 |
+
| 2.1583 | 18.04 | 7000 | 2.3562 | 20.04 | 6.13 | 19.71 |
|
68 |
+
| 2.1178 | 19.33 | 7500 | 2.3615 | 19.55 | 5.8 | 19.1 |
|
69 |
+
| 2.0904 | 20.62 | 8000 | 2.3549 | 20.37 | 6.6 | 20.05 |
|
70 |
+
| 2.0697 | 21.91 | 8500 | 2.3859 | 20.53 | 6.64 | 20.22 |
|
71 |
+
| 2.0256 | 23.2 | 9000 | 2.3715 | 20.75 | 6.54 | 20.33 |
|
72 |
+
| 2.0011 | 24.48 | 9500 | 2.3713 | 20.55 | 6.72 | 20.25 |
|
73 |
+
| 1.9899 | 25.77 | 10000 | 2.3582 | 19.82 | 5.82 | 19.4 |
|
74 |
+
| 1.965 | 27.06 | 10500 | 2.3789 | 20.48 | 5.8 | 20.23 |
|
75 |
+
| 1.9518 | 28.35 | 11000 | 2.3822 | 20.03 | 6.07 | 19.67 |
|
76 |
+
| 1.9089 | 29.64 | 11500 | 2.3743 | 19.62 | 6.1 | 19.3 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.26.1
|
82 |
+
- Pytorch 1.13.1+cu116
|
83 |
+
- Datasets 2.10.1
|
84 |
+
- Tokenizers 0.13.2
|