uploaded the first version of the used-phone price prediction mode
Browse files- README.md +135 -0
- config.json +81 -0
- price-prediction-model.bin +3 -0
README.md
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: sklearn
|
3 |
+
tags:
|
4 |
+
- sklearn
|
5 |
+
- skops
|
6 |
+
- tabular-regression
|
7 |
+
model_file: price-prediction-model.bin
|
8 |
+
widget:
|
9 |
+
structuredData:
|
10 |
+
x0:
|
11 |
+
- 0.0
|
12 |
+
- 1.0
|
13 |
+
- 0.0
|
14 |
+
x1:
|
15 |
+
- 1.0
|
16 |
+
- 0.0
|
17 |
+
- 1.0
|
18 |
+
x10:
|
19 |
+
- 10.0
|
20 |
+
- 8.0
|
21 |
+
- 5.0
|
22 |
+
x2:
|
23 |
+
- 1.0
|
24 |
+
- 1.0
|
25 |
+
- 1.0
|
26 |
+
x3:
|
27 |
+
- 0.0
|
28 |
+
- 0.0
|
29 |
+
- 0.0
|
30 |
+
x4:
|
31 |
+
- 3300.0
|
32 |
+
- 2350.0
|
33 |
+
- 2200.0
|
34 |
+
x5:
|
35 |
+
- 8.0
|
36 |
+
- 16.0
|
37 |
+
- 8.0
|
38 |
+
x6:
|
39 |
+
- 918.0
|
40 |
+
- 239.57
|
41 |
+
- 68.59
|
42 |
+
x7:
|
43 |
+
- 8.0
|
44 |
+
- 4.0
|
45 |
+
- 4.0
|
46 |
+
x8:
|
47 |
+
- 2020.0
|
48 |
+
- 2014.0
|
49 |
+
- 2015.0
|
50 |
+
x9:
|
51 |
+
- 15.42
|
52 |
+
- 12.7
|
53 |
+
- 10.29
|
54 |
+
---
|
55 |
+
|
56 |
+
# Model description
|
57 |
+
|
58 |
+
This model is a regression model that predicts the price of a used phones
|
59 |
+
|
60 |
+
## Intended uses & limitations
|
61 |
+
|
62 |
+
Ellipsis
|
63 |
+
|
64 |
+
## Training Procedure
|
65 |
+
|
66 |
+
### Hyperparameters
|
67 |
+
|
68 |
+
The model is trained with below hyperparameters.
|
69 |
+
|
70 |
+
<details>
|
71 |
+
<summary> Click to expand </summary>
|
72 |
+
|
73 |
+
| Hyperparameter | Value |
|
74 |
+
|------------------|------------|
|
75 |
+
| alpha | 0.0001 |
|
76 |
+
| copy_X | True |
|
77 |
+
| fit_intercept | True |
|
78 |
+
| max_iter | |
|
79 |
+
| normalize | deprecated |
|
80 |
+
| positive | False |
|
81 |
+
| random_state | |
|
82 |
+
| solver | auto |
|
83 |
+
| tol | 0.001 |
|
84 |
+
|
85 |
+
</details>
|
86 |
+
|
87 |
+
### Model Plot
|
88 |
+
|
89 |
+
The model plot is below.
|
90 |
+
|
91 |
+
<style>#sk-container-id-5 {color: black;background-color: white;}#sk-container-id-5 pre{padding: 0;}#sk-container-id-5 div.sk-toggleable {background-color: white;}#sk-container-id-5 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-5 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-5 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-5 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-5 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-5 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-5 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-5 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-5 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-5 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-5 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-5 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-5 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-5 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-5 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-5 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-5 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-5 div.sk-item {position: relative;z-index: 1;}#sk-container-id-5 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-5 div.sk-item::before, #sk-container-id-5 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-5 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-5 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-5 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-5 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-5 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-5 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-5 div.sk-label-container {text-align: center;}#sk-container-id-5 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-5 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-5" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Ridge(alpha=0.0001)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-5" type="checkbox" checked><label for="sk-estimator-id-5" class="sk-toggleable__label sk-toggleable__label-arrow">Ridge</label><div class="sk-toggleable__content"><pre>Ridge(alpha=0.0001)</pre></div></div></div></div></div>
|
92 |
+
|
93 |
+
## Evaluation Results
|
94 |
+
|
95 |
+
You can find the details about evaluation process and the evaluation results.
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
| Metric | Value |
|
100 |
+
|----------|---------|
|
101 |
+
|
102 |
+
# How to Get Started with the Model
|
103 |
+
|
104 |
+
Use the code below to get started with the model.
|
105 |
+
|
106 |
+
```python
|
107 |
+
import joblib
|
108 |
+
import json
|
109 |
+
import pandas as pd
|
110 |
+
clf = joblib.load(price-prediction-model.bin)
|
111 |
+
with open("config.json") as f:
|
112 |
+
config = json.load(f)
|
113 |
+
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
|
114 |
+
```
|
115 |
+
|
116 |
+
|
117 |
+
# Model Card Authors
|
118 |
+
|
119 |
+
This model card is written by following authors:
|
120 |
+
|
121 |
+
Ellipsis
|
122 |
+
|
123 |
+
# Model Card Contact
|
124 |
+
|
125 |
+
You can contact the model card authors through following channels:
|
126 |
+
[More Information Needed]
|
127 |
+
|
128 |
+
# Citation
|
129 |
+
|
130 |
+
Below you can find information related to citation.
|
131 |
+
|
132 |
+
**BibTeX:**
|
133 |
+
```
|
134 |
+
Ellipsis
|
135 |
+
```
|
config.json
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"sklearn": {
|
3 |
+
"columns": [
|
4 |
+
"x0",
|
5 |
+
"x1",
|
6 |
+
"x2",
|
7 |
+
"x3",
|
8 |
+
"x4",
|
9 |
+
"x5",
|
10 |
+
"x6",
|
11 |
+
"x7",
|
12 |
+
"x8",
|
13 |
+
"x9",
|
14 |
+
"x10"
|
15 |
+
],
|
16 |
+
"environment": [
|
17 |
+
"scikit-learn=1.1.3"
|
18 |
+
],
|
19 |
+
"example_input": {
|
20 |
+
"x0": [
|
21 |
+
0.0,
|
22 |
+
1.0,
|
23 |
+
0.0
|
24 |
+
],
|
25 |
+
"x1": [
|
26 |
+
1.0,
|
27 |
+
0.0,
|
28 |
+
1.0
|
29 |
+
],
|
30 |
+
"x10": [
|
31 |
+
10.0,
|
32 |
+
8.0,
|
33 |
+
5.0
|
34 |
+
],
|
35 |
+
"x2": [
|
36 |
+
1.0,
|
37 |
+
1.0,
|
38 |
+
1.0
|
39 |
+
],
|
40 |
+
"x3": [
|
41 |
+
0.0,
|
42 |
+
0.0,
|
43 |
+
0.0
|
44 |
+
],
|
45 |
+
"x4": [
|
46 |
+
3300.0,
|
47 |
+
2350.0,
|
48 |
+
2200.0
|
49 |
+
],
|
50 |
+
"x5": [
|
51 |
+
8.0,
|
52 |
+
16.0,
|
53 |
+
8.0
|
54 |
+
],
|
55 |
+
"x6": [
|
56 |
+
918.0,
|
57 |
+
239.57,
|
58 |
+
68.59
|
59 |
+
],
|
60 |
+
"x7": [
|
61 |
+
8.0,
|
62 |
+
4.0,
|
63 |
+
4.0
|
64 |
+
],
|
65 |
+
"x8": [
|
66 |
+
2020.0,
|
67 |
+
2014.0,
|
68 |
+
2015.0
|
69 |
+
],
|
70 |
+
"x9": [
|
71 |
+
15.42,
|
72 |
+
12.7,
|
73 |
+
10.29
|
74 |
+
]
|
75 |
+
},
|
76 |
+
"model": {
|
77 |
+
"file": "price-prediction-model.bin"
|
78 |
+
},
|
79 |
+
"task": "tabular-regression"
|
80 |
+
}
|
81 |
+
}
|
price-prediction-model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2dc21d0b60d6bbb46d0baf3fe3c5b05bd75ee5e5e20006ad4e48a5ff883c89a5
|
3 |
+
size 545
|